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ABSTRACT

We present a high resolution time-frequency spectral analysis
method for multi-component signals based on a discrete frac-
tional Gabor expansion. The proposed expansion uses the
closed form discrete fractional Fourier kernel and generate
a parallelogram-shaped time-frequency plane tiling. Com-
pleteness and biorthogonality conditions of the new expan-
sion are derived. We also present a search algorithm to ob-
tain optimal analysis fraction orders for an arbitrary, multi-
component signal to estimate a high resolution Gabor spec-
trum.

1. INTRODUCTION

Time-frequency (TF) analysis provides a distribution of sig-
nal energy over the joint time-frequency plane [2, 1]. One
of the fundamental issues in the TF analysis is obtaining the
distribution of signal energy over joint TF plane with suffi-
cient time and frequency resolution (ideally with delta func-
tion concentration.) One could use impulses in the TF plane
to represent a signal, however they are not feasible. Gabor
proposed to use time and frequency shifted Gauss windows
as basis functions because of their optimal TF concentration.
Hence the Gabor expansion represents a signal as a combina-
tion of time and frequency translated basis functions, called
TF atoms citeWexler. This type of basis functions generate
a fixed and rectangular TF plane sampling. However, if the
signal to be represented is not modeled well by this constant-
bandwidth analysis, its Gabor representation displays poor
TF localization [4, 5, 6]. Many of the real-world signals such
as speech, music, machine vibrations, biological, and seismic
signals however, have time-varying frequency content that is
not appropriate for sinusoidal analysis [5, 6, 7]. Thus the
Gabor expansion of such signals will require large number
of Gabor coefficients yielding a poor TF localization. The
compactness of the Gabor representation is improved if the
basis functions match the time-varying frequency behavior
of the signal [8, 9]. Several approaches have been proposed
to improve the resolution of Gabor representations: some of
them are using large dictionary of basis functions [5, 8], av-
eraging results obtained using different windows [7], maxi-
mizing energy concentration measures [4], and using signal-
adaptive basis functions to match the time-varying frequency
of the signal [9]. In recent works, representations on a non-
rectangular TF grid have attracted a considerable attention
[10]. A non-rectangular lattice is more appropriate for the
TF analysis of signals with time-varying frequency content.
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Here we present a discrete fractional Gabor expansion on
such a sampling scheme. The basis functions of the pro-
posed expansion are obtained from the closed-form discrete
fractional Fourier transform [11] kernel.

2. BACKGROUND

In this section we give brief background on the discrete Ga-
bor expansion and fractional Fourier analysis.

2.1 Discrete Gabor Expansion

The traditional Gabor expansion [3] represents a signal in
terms of time and frequency shifted basis functions, and has
been used in various applications to analyze the time-varying
frequency content of a signal [7]. The discrete Gabor expan-
sion of a finite-support signal x(n),0 < n < N — 1 is given
by
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where the basis functions are

B g (n) = 71(}1 —mL) e/%" ()

and @ = 2mkL' /N. The synthesis window k(n) is a periodic
extension (by N) of 4(r) which is normalized to unit energy
for definiteness. Gabor sampling parameters M, K, L, and
L' are positive integers constrained by ML = KL’ = N where
M and K are the number of analysis samples in time and
frequency, respectively, and L and L’ are the time and fre-
quency steps, respectively. For numerically stable represen-
tations, L and L’ must satisfy L L' < N, or equivalently that
L < K. The case where L = K, is called the critical sampling,
and the case L < K is called the over-sampling. In general,
Gabor windows {/,, 4(n)} constitutes a non-orthogonal basis
for the space of square summable sequences £,(N). Hence,
the Gabor coefficients can be evaluated by using an auxiliary
function called the bi-orthogonal window or analysis func-
tion [3]:
N-1
amp= 3 x(n) Fyuln) 3)

n=0

where the basis functions are 3, x(n) = 7(n —mL) ¢/“" and
¥(n) is again a periodic version of the analysis window y(n)
that is solved from a discrete biorthogonality condition be-
tween the analysis and synthesis bases sets [3].

Above Gabor basis { #, x(n) } with a fixed window and si-
nusoidal modulation generates a uniform and rectangular TF
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sampling lattice. Here we propose a discrete fractional Ga-
bor expansion that uses a non-rectangular TF sampling grid,
using the closed-form discrete fractional Fourier transform
kernel [11]. A general, non-rectangular TF lattice is more
appropriate for the analysis of signals with time-varying fre-
quency content.

In [12], authors presented a continuous-time fractional
Gabor expansion using basis functions similar to the kernel
of the fractional Fourier transform (FRFT). FRFT provides a
rotation of the TF plane by an angle o, and can be used to
generate basis functions with linear instantaneous frequen-
cies [12]. Quite amount of efforts have been made to define a
discrete version of the FRFT [11]. Here, we choose and em-
ploy the closed-form discrete FRFT that carries out all the
desired properties of the continuous FRFT kernel.

2.2 Discrete Fractional Fourier Transform

In [11], a closed-form discrete FRFT is given and it was
shown that the kernel of this transform is orthogonal, unitary,
and invertible. Basically, it is given by sampling the original
kernel of the FRFT. However, the sampling is done in such a
way that the signal to be transformed and the final transform
are sampled using the same sampling parameters. Hence
the transformation matrix obtained in this way is orthogonal.
The input signal f(¢) and the transform F, () are sampled by
sampling intervals Af and Aun = —N,—-N+1,--- . N—1,N
andm=-MM+1,--- M—1,M as,

y(n) = f(nAt), Yo(m) = Fo(mAu) 4)

Thus, the discrete FRFT of y(n) is defined as [11],
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or using the transformation kernel F, (m,n),

N
Yo (m) = ;N Fo(m,n) y(n) (6)

The inverse transform is given for M > N by
M
y(m) =3, Fg(mn)Yo(m) (7
m=—M
Under the condition that
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we obtain two definitions for the discrete FRFT for sino > 0
and sin o < 0 cases:
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For M = N and o = 1 /2, the above definition reduces to DFT
and for oo = —m /2, it becomes the inverse DFT.

3. CLOSED-FORM DISCRETE GABOR
EXPANSION

A fractional Gabor expansion with fraction order o can be
defined for a discrete-time signal x(n), n =0,1,..N—1 (N
odd) as follows:

x(n) = Z 2 Am ko ilm,k,oc(n) (8)

where the fractional basis functions are
}sz’k(n) = 71(71 —mL) Ky (n,k) 9)

M is the number of samples in time and K is the number of
samples in the o fractional domain (that is mixed time and
frequency domain u); L and L’ are the samples in time and
fractional ¥ domain respectively, and the previous condition
still holds: ML = KL' = N. Furthermore K (n, k) is the frac-
tional kernel and it replaces the sinusoidal kernel {e/®"} of
the traditional Gabor expansion where the term /" modu-
lates synthesis window and shifts it in the frequency domain
by L. Similarly, in the fractional case, the kernel K (n,k)
will shift the window in the ¥ domain by the same step. A
kernel which will provide such a shift can be obtained from
the kernel of the closed-form discrete FRFT:

sino — jcosol /
Ko (l’l,k) = @e%[nzmhr(/i )2A142] cota

i2mkl (10)

x e /N

subject to the constraint that ArtAu = w The fractional
Gabor coefficients a,, o Will be calculated as before by an

analysis window that is biorthogonal to /(). Then the Gabor
coefficients are calculated as,

(N-1)/2

ampa= 2, x(n) Yrian) (11)
n=—(N—-1)/2

where the analysis basis functions ¥, x ¢ (n) are obtained by
Tmi(n) = ¥(n —mL) Ko (n, k) (12)

The completeness condition of this basis system is obtained
by substituting Gabor coefficients a,, o, into the expansion
in given (8):

(N-1)/2 M—1K-1 _
x(n) = x(0) XY hwka(m)Fppa(l)  (13)
=—(N—1)/2 m=0 k=0
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and the completeness condition is simplified to

] ML J 12 p21AL2
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The discrete fractional biorthogonality condition can be de-
rived from the above completeness condition by Poisson sum
formula as:

1 WDz 2k
o X o7 etmK)e TR =8,8 (15
n=—(N—1)/2

for0<k<L-1,0<m<L —land —(N—1)/2<n<
(N —1)/2. For a given Gauss synthesis window, the analysis
window can be solved from the above equation system and
used to calculate the fractional Gabor coefficients. Above
fractional expansion is a generalization of the sinusoidal Ga-
bor expansion, such that it reduces to the traditional Gabor
fora=m/2.

4. ADAPTIVE SEARCH FOR THE OPTIMUM
FRACTION ORDER

Experiments show that, the time-frequency resolution perfor-
mance of the fractional signal decomposition depends on the
choice of o. For a sinusoidal signal, the best representation
may be obtained by @ = 7 /2, whereas for a linear chirp, the
appropriate choice of the fraction order depends on the chirp-
rate. In the case of multi-component signals, the component
that is matched by the analysis angle is better represented in
the TF plane than the others. For an arbitrary signal, with-
out apriori information on the frequency content, it is not
possible to determine and select the appropriate fraction or-
der o. Therefore, in order to represent all components of a
given multi-component signal with an acceptable TF resolu-
tion, we need a search algorithm for optimal analysis angles.
This can be achieved by analyzing the signal with a set of
pre-determined fraction orders {o,, 0 < p < P—1}. Then
the Gabor coefficients can be chosen by maximizing a local
energy concentration criteria [4, 9] in small time-frequency
regions, such that only one component lies in. Hence an opti-
mum fraction order is obtained by maximizing the following
energy concentration measure in each of the S x Q blocks:

S/2-1  Q/2—1

Z z rﬁi(s_’n[‘?q_k)|am,k,oc,,|4
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0/2-1
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s=—5/2 q=-0/2

E,(m,k) =

for each of the Gabor coefficient sets {ania,}, P =
0,1,---,P— 1. Then the Gabor coefficient subset that gives
the maximum energy concentration E ,(m, k) in each block
is selected as the TF representation. Repeating this search
procedure, whole TF plane is covered.

5. EXAMPLES

Example 1. In this example we analyze a signal composed
of two crossing chirps. Fig. 1 shows the traditional mag-
nitude squared Gabor coefficients |am’k\2. Notice that both

components are represented with a poor localization. Then
we analyzed this signal using the proposed discrete fractional
Gabor expansion with fraction orders or = [0 — 7], with /20
rad. increments. Then the resulting fractional Gabor coeffi-
cients are combined using the above local energy concentra-
tion measure, to obtain the final Gabor spectrum shown in
Fig. 2. Notice that both components of the signal are rep-
resented in the TF plane with higher localization than the
sinusoidal Gabor case.

Example 2. We have a signal composed of sinusoidal FM
component and a linear chirp. Sinusoidal Gabor spectrum
\am_yk|2 is given in Fig. 3. Notice that components of the sig-
nal cannot be represented properly in the TF domain. We
also analyzed this signal using fraction orders in the interval
o = [0 — ] with /36 rad. increments. Then the adaptive
search algorithm is used to find the fractional Gabor coeffi-
cients with the highest possible TF concentration in 40 x 40
TF blocks. The final Gabor spectrum is shown in Fig. 4.
Example 3. We consider another signal consisting of two
quadratic FM components. Fig. 5 shows the combination
of fractional Gabor coefficients obtained by the search algo-
rithm.

6. CONCLUSIONS

In this paper, we present a method for fractional Gabor ex-
pansion for discrete-time, non-stationary signals. We give
the completeness and biorthogonality conditions of this new
expansion. Simulations show that the fractional method
gives high resolution Gabor spectra if the analysis fraction
order matches the frequency component of the signal. For an
arbitrary signal, it is not possible to determine and select the
appropriate fraction order oc. Therefore, in order to repre-
sent all components of a given multi-component signal with
an acceptable TF resolution, we present a search algorithm
for optimal analysis angles. The signal is analyzed with a set
of fraction orders, and the Gabor coefficients are chosen for
small TF blocks by maximizing a local energy concentration
criteria yielding a highly localized final Gabor spectrum.
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