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ABSTRACT

This paper focuses on the estimation of short-term linear predictive
parameters from noisy speech and their subsequent use in wave-
form enhancement schemes. We use a-priori information in the
form of trained codebooks of speech and noise linear predictive
coefficients. The excitation variances of speech and noise are de-
termined through the optimization of a criterion that finds the best
fit between the noisy observation and the model represented by the
two codebooks. Improved estimation accuracy and reduced com-
putational complexity result from classifying the noise and using
small noise codebooks, one for each noise class. For each segment
of noisy speech, the classification scheme selects a particular noise
codebook. Experimental results show good performance, especially
under non-stationary noise conditions. Listening tests confirm that
the new method outperforms conventional speech enhancement sys-
tems.

1. INTRODUCTION

With the ubiquitous use of mobile communications, enhancing
speech subjected to background acoustic noise is a problem that
has received much interest. Among the solutions proposed are the
classic subtractive type method [1], Kalman filter techniques [2] and
subspace based methods [3] to name a few. In this work we focus
on methods that use a-priori information about speech and noise [4]
[5][6]. The a-priori information consists of trained codebooks of
speech and noise auto-regressive spectral shapes parameterized as
linear predictive (LP) coefficients. For each frame of noisy speech,
the speech and noise LP parameters and the respective excitation
variances that are most likely to have resulted in the observed noisy
spectrum are computed. In [5], the speech and noise spectra and ex-
citation variances were used to construct a Wiener filter to enhance
the noisy speech.

As shown in [5], the codebook-based method can handle highly
non-stationary noise types since the instantaneous speech and noise
excitation variances are computed for each segment (typically 20-30
ms) of noisy speech. This is in contrast to most other enhancement
schemes that rely on estimating the noise statistics based only on the
noisy observation. These noise estimation techniques include [7]
and [8], which provide reasonably accurate estimates for stationary
noise types. However, they typically employ a buffer of past sam-
ples whose length is of the order of several hundred milliseconds
and thus do not react well to quickly changing noise conditions.
The use of a noise codebook in addition to using noise information
estimated from the observation, together with instantaneous estima-
tion of the variances as in [5], overcomes this problem.

In this paper, we propose a classified noise codebook scheme.
In the classified scheme, instead of a single noise codebook, we
have a number of noise codebooks, each trained on a particular
noise type. For each input segment of noisy speech, one noise code-
book is selected. The classification is based on a conventional esti-
mate of the noise spectrum, obtained using minimum statistics [7]
for example. Thus the classification uses an average estimate of
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the noise obtained from multiple frames. We propose a maximum-
likelihood classification scheme to select a single codebook. The
system is easily extendable to different noise types with the addition
of the appropriate noise codebook. Since the individual noise code-
books are typically smaller than a single noise codebook trained
for all noise types, computational complexity is reduced. Smaller
codebooks also mean that the advantage due to a-priori information
is retained. Large codebooks, trained on different noise types lose
this advantage to some extent, since with increasing size they pro-
vide a less restrictive representation of the noise parameter space.
In this case, the speech and noise codebook entries that maximize
the likelihood score in the joint codebook search may no longer be
the speech and noise codebook entries that represent the underlying
speech and noise data.

A similar classified scheme is used in [9] in the context of
hidden Markov model (HMM) based enhancement using multiple
noise HMMs, where a single noise HMM is selected during peri-
ods of non-speech activity. The selected noise HMM is used until
the next occurrence of non-speech activity when a new selection
is made. In the classified scheme proposed in this paper, we per-
form a classification for each frame of noisy speech using an aver-
age estimate of the noise obtained from the observation. A more
important difference is that in the method proposed here, the ex-
citation variances are computed for each frame to better deal with
non-stationary noise.

2. CODEBOOK BASED PARAMETER ESTIMATION

Consider an additive noise model where speech and noise are inde-
pendent:

y(n) = x(n)+w(n), (1)

where y(n),x(n) and w(n) represent the noisy speech, clean speech
and noise respectively. We have trained codebooks of speech and
noise spectral shapes parameterized as LP coefficients. We con-
sider only the envelope of the spectrum and not its fine structure.
LP coefficients have been successfully used to encode the spectral
envelope in low bit rate speech coding [10]. For each frame, the
noisy spectrum can be modelled by a combination of speech and
noise LP spectral shapes from the respective codebooks, together
with their excitation variances. Given the spectral shapes and exci-
tation variances, the modelled noisy spectrum can be written as

P̂y(ω) =
σ2

x

|Ax(ω)|2 +
σ2

w

|Aw(ω)|2 , (2)

where σ2
x and σ2

w are the excitation variances of clean speech and
noise respectively, and

Ax(ω) =
p

∑
k=0

axk e− jωk, Aw(ω) =
q

∑
k=0

awk e− jωk, (3)

where θx = (ax0 , . . . ,axp),θw = (aw0 , . . . ,awq) are the LP coeffi-
cients of clean speech and noise with p,q being the respective LP-
model orders. The parameters to be estimated are {σ2

x ,σ2
w,θx,θw}.
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The above parameter estimation problem can be solved by find-
ing the best spectral fit between the observed and the modelled noisy
spectrum, with respect to a particular distortion measure. In general
this is a difficult problem, but it can be solved by restricting the
search space using a-priori information in the form of trained code-
books of speech and noise spectral shapes. For each combination
of θx,θw from the speech and noise codebooks, the excitation vari-
ances can be obtained by minimizing d(Py(ω), P̂y(ω)), where d is a
distortion measure and Py(ω) is the observed noisy spectrum. The
parameter set resulting in a global minimum of d(Py(ω), P̂y(ω)), for
all codebook combinations is selected as the optimal solution to the
estimation problem. More formally, the codebook entries that are
selected can be written as

{i∗, j∗} = argmin
i, j

{
min
σ 2

x ,σ 2
w

d(Py(ω),
σ2

x

|Ai
x(ω)|2 +

σ2
w

|A j
w(ω)|2

)
}
, (4)

where Ai
x(ω) and A j

w(ω) correspond to the spectra of the ith and
jth speech and noise codebook entries respectively. The conditions
for this technique to result in a unique solution are described in [4].
When the distortion measure is chosen as the Itakura-Saito measure
[11], we obtain maximum-likelihood estimates since maximizing
the log-likelihood is equivalent to minimizing the Itakura-Saito dis-
tortion [6]. For given Ax(ω) and Aw(ω), the excitation variances
that minimize the Itakura-Saito distortion between Py(ω) and P̂y(ω)
are obtained from the following system of equations [5]:

C

[
σ2

x
σ2

w

]
= D, (5)

where C,D are given by

C =

[ ‖ 1
P2

y (ω)|Ax(ω)|4 ‖ ‖ 1
P2

y (ω)|Ax(ω)|2|Aw(ω)|2 ‖
‖ 1

P2
y (ω)|Ax(ω)|2|Aw(ω)|2 ‖ ‖ 1

P2
y (ω)|Aw(ω)|4 ‖

]

D =

[ ‖ 1
Py(ω)|Ax(ω)|2 ‖

‖ 1
Py(ω)|Aw(ω)|2 ‖

]
,

where ‖ f (ω)‖ =
∫ | f (ω)|dω .

3. CLASSIFIED NOISE CODEBOOKS

The use of a noise codebook and instantaneous estimation of speech
and noise excitation variances provides good performance in highly
non-stationary noise conditions [5]. Choosing an appropriate noise
codebook size is critical as it affects performance in different ways.
From the point of view of computational complexity due to the joint
search between the speech and noise codebooks, it is helpful to have
small noise codebooks. If the noise codebook is too small, it may
not result in an accurate description of the observed noise. On the
other hand, with increasing noise codebook size, we obtain a de-
scription of the noise parameter space that becomes more and more
complete. This is especially the case if a single noise codebook is
trained with different noise sources. For a sufficiently large noise
codebook trained on various noise sources, it is possible that sev-
eral pairs of vectors from the speech and noise codebooks provide
a good fit to the observed noisy spectrum resulting in ambiguity. In
such a situation, the speech and noise codebook entries that maxi-
mize the likelihood score may no longer be the speech and noise
codebook entries that represent the underlying speech and noise
data. This is related to the uniqueness of the solution [4].

To address these issues, we propose a classified noise code-
book scheme, where we have multiple small noise codebooks, each
trained for a particular noise type. We first obtain a conventional es-
timate of the noise spectrum using the minimum statistics approach
[7]. We note that this corresponds to an average estimate of the
noise spectrum obtained from multiple past frames. For each seg-
ment of noisy speech, a classification is made using this average

estimate and a particular noise codebook is chosen. The selected
noise codebook is then used in the subsequent maximum-likelihood
search. Thus, the parameter estimation can be viewed as a two-step
process. In the first step, a single noise codebook is chosen from a
set of noise codebooks. An estimate of the noise LP vector obtained
from multiple frames of the noisy observation is used to select a
particular codebook. The speech codebook does not figure in this
step. The second step corresponds to the regular codebook search
outlined in section 2 using the speech codebook and the selected
noise codebook. We note that the selected noise codebook is aug-
mented with the vector of noise LP parameters estimated from the
noisy observation using [7] to provide robustness to noise sources
not adequately represented in the pre-trained codebooks.

To perform the classification, we consider each noise codebook
as a Gaussian mixture model, with equal weights for all the mix-
ture components. The mixture (codebook) that results in the highest
likelihood for a given observation is chosen as the codebook for the
current segment. The resulting maximum-likelihood classifier can
be written as

n∗ = argmax
n

1
Mn

Mn

∑
m=1

p(w|an,m
w ), 1 ≤ n ≤ N, (6)

where w is the vector of noise samples, an,m
w is the mth vector in

the nth noise codebook, Mn is the size of the nth codebook and N is
the number of noise codebooks. From the equivalence of the log-
likelihood and the Itakura-Saito measure, (6) can be equivalently
written as

n∗ = argmin
n

1
Mn

Mn

∑
m=1

exp
(
dIS(Āw(ω),An,m

w (ω))
)
, (7)

where dIS is the Itakura-Saito measure, An,m
w (ω) is the spectrum

corresponding to an,m
w and Āw(ω) is the spectrum corresponding to

the vector of noise LP parameters estimated from the noisy obser-
vation using the minimum statistics approach [7] for example. Thus
Āw(ω) is an average noise estimate, obtained from multiple frames.

Speech
CB

CB 1 CB N

Selected
noise CB

Avg. noise
estimate

NoiseNoise

Calculate σ2
x ,σ2

w

Max. likelihood score

Noisy spectrum

{i∗, j∗,σ∗2
x ,σ∗2

w }

Figure 1: The classified noise codebook scheme: Using noise information
estimated from the noisy observation, a single noise codebook is chosen
which is used in the subsequent maximum-likelihood search. i∗, j∗ are the
indices of the selected entries from the speech and noise codebooks and
σ∗2

x ,σ∗2
w are the corresponding excitation variances.

In (6), 1
Mn

∑Mn
m=1 p(w|an,m

w ) can be interpreted as the mean of

the likelihoods corresponding to each codevector in the nth noise
codebook. If a noise codebook contains codevectors that are very
different from each other, as is the case with siren noise for instance,
an alternate classification technique is to consider the maximum of
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the likelihood of the codevectors instead of the mean. The corre-
sponding classifier is given by

n∗ = argmax
n

{ max
1≤m≤Mn

p(w|an,m
w )}, 1 ≤ n ≤ N. (8)

We use the classifier given by (8) in the experiments. Figure 1 pro-
vides a schematic diagram of the classified scheme.

The advantages of the classified scheme include the small size
of the individual codebooks, which addresses the complexity issue.
Also, as we have one codebook for each noise type, a good descrip-
tion of the noise source can be obtained and the ambiguity discussed
earlier is avoided. Another important advantage of the classified
scheme is that it is possible to have different LP model orders for
different noise types. This was found to be particularly useful in en-
hancing speech corrupted by siren noise for example. Noise types
such as siren noise that exhibit strong harmonics need a high or-
der in the LP analysis compared to other noise types such as car
noise. The order of the LP analysis of the observation is then suit-
ably modified, depending on the noise codebook that is chosen. It
is also possible to have different codebook sizes for different noise
types.

4. EXPERIMENTS

In this section, we describe the experiments performed to evaluate
the performance of the proposed classified noise codebook scheme.
A 10-bit speech codebook of dimension 10 was trained using the
generalized Lloyd algorithm [12] with 10 minutes of speech from
the TIMIT database [13] using the Itakura-Saito measure. The sam-
pling frequency was 8000 Hz. A frame length of 240 samples with
50% overlap was used. The frames were windowed using a Hann
window. The test set consisted of ten speech utterances, five male
and five female, not included in the training. Experiments were con-
ducted for noisy speech at 10 dB input signal-to-noise ratio (SNR)
for highway noise (obtained by recording noise on a freeway as
perceived by a pedestrian standing at a fixed point), speech babble
noise, siren noise and white Gaussian noise. The noise samples used
in the training and testing were different. The objective measures
of speech quality used were signal-to-noise ratio (SNR), segmental
signal-to-noise ratio (SSNR) and log-spectral distortion (SD). The
SNR for an utterance was computed as

SNR = 10log10

(
∑T

t=1 x2(t)

∑T
t=1(x(t)− x̂(t))2

)
, (9)

where x̂(t) is the modified (noisy or enhanced) speech and T is the
number of samples in the utterance. The SSNR was computed as
the average of the SNR for each frame in the utterance. The SD was
computed according to [11].

4.1 Choosing the noise codebook size

For the highway, white, babble and siren noise considered here, ex-
periments were conducted to choose the best noise codebook size.
For each noise type, the codebook-based parameter estimation de-
scribed in section 2 was performed using noise codebooks of vary-
ing sizes. To focus on the effect of the noise codebook size alone,
the appropriate noise codebook was used, without performing the
classification (i.e., we assume an ideal classifier). Performance of
the classified scheme is discussed in section 4.2. Using the esti-
mated STP parameters, a Wiener filter was constructed as

H(ω) =
σ2

x /|Ax(ω)|2
σ2

x /|Ax(ω)|2 +σ2
w/|Aw(ω)|2 . (10)

Enhanced speech was obtained by applying the Wiener filter to the
noisy speech. It was observed that objective measures such as the
segmental SNR values of the enhanced speech increased up to a cer-
tain noise codebook size, after which they began to decrease. The
initial increase in segmental SNR with codebook size is intuitive

since small codebooks do not adequately describe the noise spectral
shapes. The decrease can be attributed to the fact that with increas-
ing size, the noise codebook begins to represent a more complete
description of the noise parameter space rather than a restrictive
description that captures only noise-specific characteristics. As ob-
served earlier, in this case, the speech and noise codebook entries
that maximize the likelihood score in the joint codebook search may
no longer be the speech and noise codebook entries that represent
the underlying speech and noise data.

Figure 2 shows the segmental SNR values for the different noise
types, as a function of the number of noise codebook entries. For
each frame, the noise codebooks were augmented with the noise
information estimated from the noisy observation using [7]. Also
shown in the figure is the result for the case where the noise code-
book consists of only the estimated noise information. This is de-
noted in the figure by a codebook with 0 entries. It can be seen that
for all noise types, using a-priori information is better than just us-
ing noise information estimated from the observation. As expected,
there is a large gain due to the a-priori information for siren noise,
which is non-stationary. Based on the segmental SNR values from
the experiments, codebook sizes of 4,8,16,2 entries were found to
be optimal for highway, white, babble and siren noise respectively.
The real-world siren noise considered here consists of two tones,
and thus two codebook entries were sufficient.

dB

0 1 2 4 8

6.8

7.2

(a)

dB

0 1 2 4 8 16

5.3

5.9

(b)

dB

0 1 2 4 8 16 32 64

4.4

4.9

(c)

dB

0 1 2 4 8
4.2

12.2

(d)

Figure 2: Segmental SNR values for varying number of noise codebook
entries. The zero-entry codebook corresponds to using noise information
estimated from the observation only (no a-priori information). (a) Highway.
(b) White. (c) Babble. (d) Siren.

We note that the codebook-based parameter estimation method
discussed in this paper can deal with two types of non-stationarity,
namely, varying spectral shape and varying noise energy. The noise
codebook handles varying noise spectral shape. The estimation of
excitation variances of speech and noise for each observation frame
handles quickly changing noise energy.

4.2 Evaluation of the classified scheme

To evaluate the advantage due to the classified scheme, noisy speech
at 10 dB input SNR was processed by the codebook based enhance-
ment system with and without classified noise codebooks. Four
different noise types were considered: highway, white, babble and
siren noise. In the classified scheme, four separate noise codebooks,
one for each noise type, were used together with the classifier (8).
The noise LP order was 6 for highway and white noise, 10 for bab-
ble noise and 16 for siren noise. In the unclassified setup, a single
noise codebook was formed by concatenating the individual noise
codebooks. A common LP order of 6 was used for all noise types.
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Enhanced speech was obtained by applying the Wiener filter to the
noisy speech. The classifier given by (8) performed better than the
classifier in (6)and was thus used in the experiments.

It can be seen from table 1 that the classified scheme results
in improved performance compared to a single noise codebook. In
the unclassified scheme, it was found that sometimes entries from
the concatenated noise codebook that did not correspond to the ac-
tual noise type were selected. There is large improvement for siren
noise. This is also due to the fact that it is possible to have a
higher LP order for siren noise in the classified scheme. Differ-
ent LP model orders for different noise types are not possible in the
unclassified scheme. We note that along with the improvement in
performance, there is also a reduction in computational complexity
due to the small size of the individual noise codebooks.

SNR SSNR SD

Noise C NC C NC C NC

Highway 14.3 12.9 7.2 5.7 3 3.1

White 14.7 13.6 5.9 5.2 4 4.2

Babble 11.8 11.4 5 4.4 3.3 3.5

Siren 16.5 11.6 11 4 2.8 4.8

Table 1: SNR, segmental SNR (SSNR) and spectral distortion (SD) values
in dB averaged over ten utterances at 10 dB input SNR for the classified (C)
and non-classified (NC) setups.

4.3 Enhancement system

The parameter estimation described in this paper can be incorpo-
rated in several state of the art speech enhancement systems. In
this work, we use the parameter estimates in the noise suppression
system of the enhanced variable rate codec (EVRC-NS) [14]. The
EVRC-NS requires estimates of the background noise and contains
mechanisms to update the background noise estimates based on the
observed noisy input. Here, we use the noise estimates obtained
from the classified noise codebook scheme. The EVRC-NS is a fre-
quency domain technique and frequency bins in the noisy spectrum
are grouped together to obtain 16 channels. A frequency dependent
gain factor is applied to each bin to obtain the enhanced spectrum.
In our implementation, since we work with AR-spectra that do not
contain the fine structure, this grouping is not necessary and we re-
tain the individual frequency bins. For computing the frequency
dependent gain factor, instead of the noisy spectrum, we use the
modelled noisy spectrum obtained from the classified noise code-
book scheme. The modelled noisy spectrum is given by (2). For the
estimate of the background noise power spectrum for each frame,

we use P̂w(ω) = σ 2
w

|Aw(ω)|2 , where Aw(ω) is the noise spectrum cor-
responding to the noise codebook entry selected for that frame and
σ2

w is the corresponding excitation variance.
For consistency with our parameter estimation technique, we

use a frame length of 240 samples with 50 % overlap. The frames
were windowed using a Hann window. The rest of the processing
is the same as in [14]. The observed noisy spectrum is modified by
the frequency dependent gain factor and is transformed back to the
time domain to obtain the enhanced speech. The regular EVRC-NS
used in the comparison was run at its native frame rate as in [14]
with no changes. We focus only on the enhancement system and do
not perform the encoding/decoding operation.

AB listening tests were conducted to evaluate the performance
of the proposed method. The number of listeners was 10. Enhanced
speech obtained using the regular EVRC-NS was compared to the
enhanced speech obtained using the EVRC-NS with the codebook-
based parameter estimates. The noisy speech had a 10 dB input
SNR. The methods were evaluated in pairwise comparisons on each
of the noisy utterances. To eliminate any biasing due to the order
of the algorithms within a pair, each pair of enhanced utterances
was presented twice, with the order switched. It can be seen from

table 2 that there is a strong preference for the proposed method for
the highway, babble and siren noise. As expected, there is only a
slight advantage for white noise, which is stationary and thus easy
to estimate using conventional noise estimation techniques.

Highway White Babble Siren

Score (%) 87 63 80 81

Table 2: Preference for proposed method averaged over all listeners.

5. CONCLUSIONS

A classified noise codebook scheme with a maximum-likelihood
classifier has been proposed for the codebook-based short-term
predictor parameter estimation method. Experiments show that
using classified noise codebooks results in improved performance
compared to using a single noise codebook. The small size of
the individual noise codebooks reduces computational complexity
arising due to the joint search between the speech and noise
codebooks. The estimates of the speech and noise spectra obtained
from the classified scheme were used in an enhancement algorithm
based on the EVRC noise suppression system. Listening tests show
that the resulting system performs better than the regular EVRC
noise suppression system.
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