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ABSTRACT 
BSS performance is not still enough for speech signals and 
long acoustic responses. An original frequency model, 
strictly equivalent to a time linear convolution, is used for 
speech signals under highly reverberant conditions. If the 
responses are virtually sectioned in K blocks of N samples, 
the time linear convolutions are strictly transformed in fre-
quency domain at frequency ν, into FIR filtering of K taps 
where the K taps are the complex gains of the K sectioned 
blocks at the same frequency ν.  Short values of the DFT, N, 
can be employed, although the length of the responses re-
mains long enough (K.N samples) to suit with acoustic re-
sponses. Finally, the separation is achieved with a natural 
gradient algorithm based on a maximum-entropy cost func-
tion. The proposed method is then tested on speech signals. 

1. INTRODUCTION 

Blind Source Separation (BSS) consists in recovering sig-
nals of different physical sources si(t) from a finite set of 
observations xi(t) recorded by sensors. Under the only hy-
pothesis of mutually independent sources, BSS extracts the 
contributions of the sources independently of the propaga-
tion medium. It aims at the retrieval of independent sources 
and tests the statistical independence of the separated sig-
nals according to different measures as higher-order cumu-
lants or mutual information.  
Most research is done for BSS with instantaneous mixtures. 
However, in the context of speech signal separation, BSS 
must be necessary achieved for convolutive mixtures as the 
acoustic impulse responses contain typically several echoes 
and reverberation. The separation can be applied in time or 
in frequency-domain. However, working in frequency do-
main is now commonly admitted in speech applications. 
Indeed, the iterative learning rule is complicated for large-
tap FIR filter in time domain and the convergence strongly 
degrades [1,2]. In frequency-domain, convolutive mixtures 
are usually reduced to simultaneous mixtures and BSS for 
instantenous mixtures can be used with great performances. 
In this paper we also achieve BSS in frequency domain for 
the sake of simplicity and stability. It performs usually 
good results when no reverberation is present. However, 
under reverberant conditions, the separation performance 
remains not still enough. The frame size of discrete Fourier 
transforms (DFT), N, must be discussed in detail, versus the 
length of a room impulse response L. N must verify N>>L 
in order to estimate an unmixing filter [3,4]. Indeed, firstly, 

if N is too short versus the inverse filter lengths, the im-
pulse reponses are truncated. It often occurs with room 
acoustics, as the inverse system generally contains more 
parameters than the mixing one [3,4]. Unfortunately, the 
separation performance is not increasing with N and is satu-
rated before reaching a sufficient performance because few 
data are available in frequency domain for a constant dura-
tion of the observations lengths [1,2]. BSS methods then 
fail to test the independence of the estimated sources.  
Besides, in frequency domain, the convolutive mixture is 
usually reduced to an instantaneous complex mixture for 
each frequency bin. It is only an approximation as it implies 
a circular convolution (and not a linear one) in time domain. 
This approximation is only correct when the real impulse 
response lengths are short in comparison to N. In order to 
resolve the problem, we propose in section 2 to use a com-
plete model in frequency domain, exactly equivalent to a 
time linear convolution. The idea is derived from the overlap-
add method [5]. The responses are virtually sectioned in K 
blocks of N samples. Data are then transformed in frequency 
domain at frequency ν, into a FIR filtering of K taps where 
the K taps are the complex gains of the K sectioned blocks at 
the same frequency ν. Consequently, we have replaced the 
problem of the inversion of  filters of K.N taps with the in-
version of N filters of K taps. The interest consists in 
combining both short Fourier Transforms (with N samples) 
and convolutive mixtures with few taps K, although the 
length of the inverse impulse responses remains long enough 
(K.N taps) according to the acoustic responses. Finally, the 
separation is achieved in section 3 with a natural gradient 
algorithm based on a maximum-entropy cost function. The 
proposed method is then tested in section 4 on speech 
signals. 

2. SOUND MIXING MODEL 

2.1 BSS mixing mdel 
We consider a M input, M output convolutive problem. Each 
microphone ( )jx t  receives a linear convolution (noted *) of 
each sound source si(t): 

1

( ) * ( )
N

j ij i
i

x t h s t
=

= ∑     (1) 

where hij is the impulse response from source i to output j. In 
frequency domain, it is usually reduced to: 
 

( , ) ( , ) ( , )X n A n S nν ν ν=     (2) 
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where X(n,ν) (respectively S(n,ν)) is the N-points DFT of the 
nth data vector X(n) (respectively S(n)).  
This frequency model is simple but equation (2) is only an 
approximation as it implies a circular convolution in time-
domain and is justified only for N>>L. But if N>>L, not 
enough data X(n,ν) are available to estimate the sources for a 
usual duration of the observations lengths (3 or 4 seconds). 
So, we compute a complete frequency expression, strictly 
equivalent to a time linear convolution. This model is ex-
posed in two parts. Consider a long impulse response h of 
length L :  h=[h0, …, hL-1]T. It can be virtually sectioned in K 
segments of length N and elementary impulse responses hi: 
 
hi =[hiN, …, hiN+N-1] T   i=0, ..., K-1      (L=K.N)   

Due to the principle of superposition, the resulting time sig-
nal x(n) of the linear convolution between  h and a signal s(n) 
is the addition of the linear convolution of all the elementary 
filters hi. Each elementary output is calculated in section 2.2. 
Then the complete model is exposed for long responses in 
section 2.3. Uppercase symbols will denote frequency vari-
ables, lowercase symbols stand for time variables. 

2.2 Frequency model 
Consider x(n), the linear convolution between s(n) and a FIR 
filter H. Let h=[h0, …, hN-1]T be its response of N taps. x(n) 
denotes the data block [x(n-N), ..., x(n), …, x(n+N-1)] T and is 
given by:    (3) 
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Extend the Toeplitz matrix (NxN) in (3) to a circulant ma-
trix (2Nx2N), noted χ, built with samples of signal s(n).  
The resulting vector is: x’(n)=[x’(n-N), …,x’(n+N-1)] T:  
(4) 
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where h’ contains the response h padded with N zeros. 

It can be seen from equations (3) and (4) that the N last com-
ponents of vector x’(n) are equal to x(n). So, vectors x(n) 
and x’(n), verify : 
  
f .x(n)=f.x’(n)     (5) 

if f is a (2Nx2N) diagonal matrix:   f=diag(0,...,0, f0, …, fN-1) 
and [f0, …, fN-1]T a window of length N. Consequently it 
comes from equations (4) and (5) that : 
 
f.x(n)= f.x’(n)=f.χ.h’    (6) 

W denotes the symmetric matrix (2Nx2N ) whose kth, lth 
element is Wkl=exp(-j2πkl/2N). Multiplying equation (6) by 
the DFT matrix W leads to :  

{1424314243
-1 -1

HS(n)F

W.f.x(n) = W.f. .h' = Wf  W . W W .Wh'x x  (7) 

As χ is a circulant matrix, it owns the DFT matrix W as ei-
genvectors. It can be so deduced that WχW-1 is equal to a 
diagonal matrix S(n) (2Nx2N), whose elements are the DFT 
coefficients of the first column of matrix χ, i.e. the 2N-points 
DFT of : [s(n-N), ..., s(n), ..., s(n+N-1)] T .  
They are denoted :   S(n)=diag(S(n,ν0),  ..., S(n,ν2Ν−1)) 
 
F= W.f.W-1 is a 2Nx2N circulant matrix whose elements are 
the DFT coefficients of the window f. H denotes the 2Nx1 
vector of the DFT coefficients of the impulse response vector 
h, padded with N zeros : 
 
H =W.[h0, …, hN-1, 0, ..., 0]T=[H0, …, H2N-1]T               (8) 
 
As a conclusion, the model  (7) becomes : 
 
W.f.x(n) = F. S(n). H    (9) 
 
where W.f.x(n) represents the 2N-points DFT of the block  
[x(n-N), ..., x(n), …, x(n+N-1)] T, multiplied by the window 
[0, ..,0., f0, …, fN-1] T.Consequently, eq. (9) relies the DFT of 
the signal s(n) and the DFT of the impulse response H to the 
time linear convolution x(n). It is the complete frequency 
model equivalent to the time linear convolution. 

2.3 Case of a long impulse response  
Consider the long impulse response h of length L. It can be 
virtually sectioned in K segments of length N of elementary 
impulse responses hi, with (L=K.N) : 
 
 hi =[hiN, …, hiN+N-1] T i=0, ..., K-1 

Due to the principle of superposition, the resulting time sig-
nal x(n) of the linear convolution between H and s(n) is the 
addition of the linear convolution of all the elementary filters 
hi. Each elementary output is given by (9) where vector H is 
replaced with the elementary vector Hi, which is the vector of 
the DFT coefficients of  hi padded with N zeros.  
 
Hi = W. [hiN, …, hiN+N-1, 0, ..., 0] T i=0,...,K-1 (10)  
Hi =  [Hi(ν0), …, Hi(ν2Ν−1)] T  

Consequently, the signal x(n) is of the form : 

W.f.x(n)= F. 
1

0

K

i

−

=
∑ S(n-iN). Hi   (11) 

where S(n-iN) is the 2Nx2N diagonal matrix whose elements 
are the DFT of the data block:  [s(n-iN-N), ..., s(n-iN), ...,  
s(n-iN+N-1)] T. Eq.(11) can also be written with the follow-
ing expression, similar to equation (9) :   
W.f.x(n) =     (12) 

0 1 ( -1).[ ( ) ( - ) ... ( - ( -1) )].[   ...  ] T
KS n S n N S n K N H H H
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where S’(n) is a (2Nx2KN) row-block matrix obtained by 
stacking the K diagonal matrices S(n-iN) (for i=0,…, K-1).  
Let H’ be the 2KN vector obtained by stacking vectors Hi 
(i=0,…,K-1). The 2N points DFT of the windowed signal 
x(n), noted fX (n,v) , is given by: (13) 

  

0 2N-1v=v , ..., v
14243f

0 K-1S(n,v).H (v)+...+ S(n-KN,v).H (v)

X (n,v)=W.f.x(n) = F. S'(n). H'    

As F is not a diagonal matrix, fX (n,v)  at frequency bin ν is 
a linear combination of the terms :  
 

S(n,νi).H0(νi)+...+ S(n-KN,νi).HK-1(νi)  

at all frequency bins νi and eq. (13) is not easy to handle 
since all frequencies are mixed. Besides, the system (13) 
cannot be obviously inversed as F is of rank N : recall that 
F= W.f.W-1 and f=diag(0,...,0, f0, …, fN-1).  
However, the useful informations issued of the DFT are re-
stricted on the N first frequencies for real-valued signals and 
the N first components of vector (S’(n). H’) can be recovered 
under some conditions. If the window is a hamming function, 
F is a banded matrix (see the 10th row of F on figure 1). Con-
sequently, system (13) of (2N) equations can be separated 
into two systems of N equations. The partionned square ma-
trix F(k,l) (restricted to k=1….N, l=1… N) of length NxN 
can be numerically inversed by 1

NF − [6].  

After inversion of the first system of (13) by 1
NF − , the 

model becomes: 
Z(n, ν) = 1

NF − . fX (n,v)  = S’(n). H’     ν=ν0, ..., νΝ−1  (14) 
 
And the ith equation of (14) is equal to : 
 
Z(n,νi ) = S(n,νi).H0(νi)+...+ S(n-KN,νi).HK(νi) (15) 

Suppose now that the DFT are computed and data blocks of 
x(n), delayed of N samples. ( , )iZ kN ν  can be seen, at each 
frequency bin νi , as the filtering between the FIR filter of K 
taps ( ( )i iH ν  i=0,…,K-1) and the K DFT of the sectioned 
signal  S(kN-iN,νi)      i=0,...,K-1.  
For each frequency bin νi, the model is equal to a linear con-
volution, versus the time index k: 
 

( , )iZ kN ν =H* S(kN,νi)     (16) 
 

 
figure 1: 10th row of the module of matrix F with a hamming func-
tion for N=64 

3. APPLICATION TO BSS 

For more simplicity, consider here a 2 inputs, 2 outputs con-
volutive problem. Two sensors receive mixtures of sources 
s1(n) and s2(n), mixed with filters 11H , 12H , 21H and 22H . 
From section 2.3, for each frequency bin νj, the mixing 
model is equal to : 
 

1( , )iZ kN ν  = H11* S1(kN,νi) + H12* S2(kN,νi)   (17) 
2( , )iZ kN ν = H21* S1(kN,νi) + H22* S2(kN,νi)  

So, we have replaced the problem of inversion of  filters of 
K.N taps with the inversion of N filters of K taps. Each in-
verse filter is estimated independently and modelled with a 
FIR filter of K’ taps. The parameters N and K’ can be set to 
much smaller values than in time-domain or classical fre-
quency-domain. The first interest is that relative short values 
of N can be used for the DFT, even in the case of long re-
sponses and highly reverberant conditions. The permutation 
indeterminacy and the choice of N are so strongly simplified. 
For short duration of signals, enough data are available to 
achieve the separation. The second interest is that the pa-
rameter K’ can be chosen small enough to assure a good con-
vergence for the separation filters. 
 BSS methods developed in time domain for convolved 
complex sources can be applied to the mixtures 

( , )iZ kN ν =[ 1( , )iZ kN ν 2( , )iZ kN ν ]T, but information maxi-
mization methods best suited with acoustically-mixed 
sounds. For each frequency bin νi, we search the convolutive 
separating system w will yields outputs y( , )ikN ν  that do not 
contain any mutual information: 

K'-1

p=0
y( , ) = ( , ) ( , )i i ipkN kN Z kN pNν ν ν−∑w      (18) 

where ( , )p ikN νw is a sequence of K’ (2x2) matrices. 
We perform the separation with a natural gradient algorithm 
based on a maximum-entropy cost function [7].  It is a modi-
fied gradient search whereby the standard gradient search 
direction is altered according to the local Riemannian struc-
ture of the parameter space. The resulting search direction is 
then guaranteed to be invariant to the statistical relationships 
between the parameters of the model, thus providing statisti-
cally efficient learning performance [8]. 
 
 The complex-valued matrices ( , )p ikN νw  are updated 
according to [7]: 

i i

i i i

'-1

i i i
0

(( 1) , ) ( , )

( ) ( , ) - ( (( ) , ) (( - ) , )
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p p
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kN kN y k P N u k p N
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ν ν ν−
=

+ = +

 − 

= −∑

w w

w

w

 (19) 

The optimum choice for each function φ(yi) depends on the 
statistics of each extracted source (yi) at convergence. The 
optimal choice ( ) = log( ( ))/i i i iy d p y dyφ −  yields the fastest 
convergence behavior and best steady-state performance if 

( )i ip y  is the true p.d.f. of the ith extracted source. Subopti-
mal choices for these nonlinearities still allow the algorithm 
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to perform separation of the sources, although for a large 
mismatch there is no guarantee of convergence to the desired 
solution. Here, ( )i ip y must suit the p.d.f. of the sources ex-
pressed in frequency-domain S(n,νi). From [9], we assume 
Laplacian priors for the sources and we use the following 
activation function: ( ) / , 0u u u uφ = ≠  
As remarked in [10], maximization of the entropy at the 
output of the network leads to separation and deconvolution 
since redundant delayed versions of the same signal result in 
less entropy overall. One major drawback that the feedfor-
ward architecture suffers in time domain is that it introduces 
temporal whitening on the recovered sources. Yet, speech 
signals have short-term dependencies (up to some 5-6msecs, 
translating to 40-50 samples for a 8kHz-sampled signal). 
Using the model (18), the extracted sources y(kN,νi) are 
estimations of the DFT of the sources computed on succes-
sive data blocks of N samples. Under that condition, we can 
then assume that the dependencies between time-frequency 
samples are weak. 

4.  EXPERIMENTS IN REVERBERANT ROOM 

The performance of the proposed algorithm is tested on real 
data available from [11] of two people speaking simultane-
ously in a room. Two mixtures are constructed with real 
measured impulse responses and generate highly reverber-
ant mixtures (figure 2). The reverberation time is around 
250ms. 

 
Figure 2 : example of a room impulse response 
 
The source signals are sampled at 22.05kHz and we used  4 
seconds for learning. The performance is evaluated with the 
noise reduction rate (NNR in dB), defined as the output sig-
nal-to-noise ratio (SNR) in dB in the first estimated source 
minus input SNR in dB in one sensor. The second source acts 
as the noise in the SNR. The well-known permutation prob-
lem is overcome as proposed in [12]. The FFT length was set 
to 128 to 512 and the segments number is varying from 1 to 
10 (figure 3).   
 
We remark that NRR is increasing with K’. Very good per-
formances can be obtained with relative short values of the 
DFT. For example, the best NRR is around 19dB for N=512 
and K=10, which is equivalent to a length of 5120 points for 
the inverse filter. We also tried a classical frequency domain 
algorithm on the same data with N set to 256 to 8192. The 
performance is saturated and best results were obtained for 
N=1024 (NRR=9.3 dB). Indeed the performances decrease 
for larger values of N since we have too few of frequency 
data. 

 
Figure 3 : NRR in function of the segments number K’ 

5. CONCLUSION 

An original frequency model, strictly equivalent to a time 
linear convolution, is used for BSS of speech signals under 
highly reverberant conditions. It includes a segmentation of 
the responses into K segments. Exploiting this model, data 
are transformed for each frequency bin into convolutive 
mixtures of K taps. Finally, the separation is achieved with 
a natural gradient algorithm based on a maximum-entropy 
cost function. Short values of the DFT N can be employed, 
although the length of the inverse responses remains long 
enough (K.N samples), according to real-world responses. 
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