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ABSTRACT

The goal of this paper is to determine the situations when a given
finite set of complex numbers can be reordered such that the novel
corresponding complex sequence is a minimum-phase one.

1. MOTIVATION AND PROBLEM STATEMENT

Many signal and image processing applications deal with signal re-
construction based on modulus of the Fourier transform. For in-
stance Fourier descriptors (FD) magnitude has some invariant prop-
erties very useful in detecting shapes regardless of their size and
orientation [1]. However, the FD magnitude alone is generally in-
adequate for reconstruction of the original shape. Indeed, FD as
the discrete Fourier transform of the sampled boundary, can be ob-
tained by sampling the Fourier transform. Thus the reconstruction
of a complex sequence from its FD magnitude can be possible only
when its corresponding z-transform is a minimum-phase function
[2], i.e. all zeros and poles of its z-transform are inside the unit cir-
cle (such sequence is referred as minimum-phase sequence). On the
other hand, we can find applications where there is no preliminary
request to pick the boundary samples set in clockwise or trigono-
metric order. This means that one may select the succession of
the phasors, and the resulting sequence is a minimum-phase one
(Fig. 1). Nevertheless, this may lead to loosing some invariant prop-
erties. In the following we are interested to examine whether any
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Figure 1: The sampled boundary reordered.

finite set of complex numbers can be reordered such that the corre-
sponding complex sequence is a minimum-phase one. We shall see
that this happens only for special cases and we shall try to charac-
terize this type of sets. In this work we shall avoid zero samples,
since by using another selection of coordinates the sampled bound-
ary can skip the origin. Moreover, to simplify our analysis, we shall
discuss only the case, when the samples modulus differs, i.e. they
are not located on an arc of a circle.

2. FRAMEWORK

We shall focus our study on finite length complex valued sequences
x
�
n ��� n � 0 � M. The z-transform of x

�
n � is:

X
�
z �	� x

�
0 ��
 x

�
1 � z � 1 
����
 x

�
M � z � M � (1)

If we restrict our interest only to transfer functions X
�
z � , of the

form given by (1), then x
�
n � and X

�
z � can be considered as the

impulse response and the transfer function of an FIR filter. The
Fourier transform of x

�
n � is given by: X

�
e jω ��� X

�
z ��� z � e jω . For

N � M 
 1 the discrete Fourier transform of the given sequence x
�
n �

is: �X �
k ��� X

�
z ���

z � e j 2πk
N

� where k � 0 � N � 1. Because the length of

the sequence is finite and M 
 1 � N, �X �
k � are exactly the samples

of the Fourier transform X
�
e jω � :�X �

k ��� X
�
e jω ��� ω � 2πk

N
� k � 0 � 1 � ����� � N � 1 �

and no frequency aliasing occurs when we reconstruct X
�
e jω � from

spectrum samples �X �
k � [3]. It follows that z-transform can be found

from the DFT samples:

X
�
z �	� N � 1

∑
n � 0

x
�
n � z � n � 1

N

N � 1

∑
n � 0

� �X �
k � e j2πkn

N � z � n �
Thus it is suggesting that a change in the way we pick the samples
x
�
n � (by modifying the succession) may affect the X

�
z � ’s pole-zeros

configuration, and consequently if X
�
z � is minimum phase or non-

minimum phase function. Nevertheless, our interest is to identify
the minimum-phase sequences, since, in their case, from:� �X �

k ����� X
�
z � X �

z � 1 ���
z � e

j2πk
N

�
the ambiguity of zero allocation is not anymore present [4].

3. REORDERING THE SEQUENCE

One of the properties of minimum-phase systems which may start
our discussion is the following [5]:

Theorem 1 (Energy concentration) If the systems H
�
z � (non-

minimum phase) and Hm
�
z � (minimum-phase) have the same mag-

nitude response and their response to the same input are g
�
n � and

y
�
n � , respectively, then for any n0,

n0

∑
n � 0

� y � n ��� 2 � n0

∑
n � 0

� g � n ��� 2 � (2)

From this property, one may suppose that a condition for a certain
sequence x

�
n � to be a minimum-phase is to have its energy concen-

trated around origin such that:� x � 0 ��� �!� x � 1 ��� �"��#�!� x � M ��� � 0 � (3)

This happens for real positive sequences, as a consequence of En-
eström-Kakeya theorem [6].
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Figure 2: The stability triangle and the area where the system is
unstable.

Theorem 2 (Eneström-Kakeya Theorem) Suppose that
0 $ a0 $ a1 $%��&$ aM . Then all the zeros of the polyno-
mial p

�
z ��� a0 
 a1z 
����
 aMzM lie in the disc ' z : � z � $ 1 ( .

Indeed, if the set ' x
�
n ��� n � 0 � 1 � ����� � M ( respects the condition (3),

by taking ak � x
�
M � k � , we retrieve the situation described in En-

eström-Kakeya theorem. We obtain:

Proposition 1 Suppose that ' x
�
n ��� n � 0 � 1 � ����� � M ( satisfies the

condition (3), then X
�
z � as given by (1) is a minimum-phase func-

tion.

Unfortunately, this is not anymore valid if we skip to real se-
quences, with both positive and negative samples. To show this, it
is enough to consider the case M � 2, and to compare the condi-
tion (3) rewritten here as:� x � 0 �����!� x � 1 �����)� x � 2 ��� � 0 � (4)

with the well known stability condition (9) for a quadratic polyno-
mial (Appendix A.2):**** x � 2 �

x
�
0 �

**** $ 1;

**** x
�
1 �

x
�
0 �+
 x

�
2 �

**** $ 1 � (5)

We can easily see that (4) and (5) are different. Furthermore Fig. 2
presents the area (two small rectangular triangles) which satis-
fies (4), but does not belong to the stability triangle.

However, we shall show that

Proposition 2 For any set of real numbers ' x
�
i ��� i � 0 � 2 ( , there is a

choice of ordering them such that the corresponding new sequence
is a minimum-phase one.

Proof: We begin with a lemma which is proven in Appendix B.

Lemma 1 If A, B and C are real numbers such that �A �+�,�B ����C ��� 0, at least one of the following inequalities are satisfied:
1. �B � $)�A 
 C � ;
2. �C ��$!�A 
 B � ;
3. �A � $)�B 
 C � .

To prove Proposition 2, we just make the following corresponding
substitutions:
1. A � x

�
0 � ; B � x

�
1 � ; C � x

�
2 � ;

2. A � x
�
0 � ; C � x

�
1 � ; B � x

�
2 � ;

3. B � x
�
0 � ; A � x

�
1 � ; C � x

�
2 � .

which will satisfy the conditions (5).
One may ask if a similar statement as Proposition 2 can be

found for other values of M � 2. For M � 3 it can be shown that the
answer is positive only in special cases. Actually we have:

Proposition 3 For any set of real numbers ' x
�
i ��� i � 0 � 3 ( , which

differ in modulus and satisfying both x
�
0 � x � 1 � x � 2 � x � 3 �-� 0 and

x
�
0 �.
 x

�
1 �.
 x

�
2 �.
 x

�
3 �0/� 0, there is a choice of ordering them

such that the corresponding new sequence is a minimum-phase one.

Proof: Again we begin with a lemma which is proven in Ap-
pendix C.

Lemma 2 Let A, B, C and D be real positive numbers such that
A � B � C � D � 0.

1. Then all the zeros of the following polynomials:1 P1
�
z ��� Az3 
 Bz2 
 Cz 
 D;1 P2
�
z ��� Az3 � Bz2 
 Cz � D;1 P3
�
z ��� Az3 � Cz2 
 Bz � D;1 P4
�
z ��� Az3 
 Cz2 
 Bz 
 D.

lie inside the unit circle.
2. If A 
 D � B 
 C, then all the zeros of the polynomial P5

�
z �&�

Az3 � Cz2 � Bz 
 D lie inside the unit circle.
3. If A 
 D $ B 
 C, then all the zeros of the polynomial P6

�
z �&�

Bz3 � Az2 
 Cz � D lie inside the unit circle.

To prove Proposition 3, we start by assuming that the set has been
ordered such that:� x � 0 �����)� x � 1 ��� �)� x � 2 ��� �)� x � 3 ��� � 0 �
and consequently let be A �2� x � 0 ��� , B �2� x � 1 ��� , C �2� x � 2 ��� and D �� x � 3 ��� .
Case 1. All the numbers have the same sign. Then we can choose
X
�
z �	� sign 3 x � 0 �54 P1

�
z � or X

�
z �	� sign 3 x � 0 �54 P4

�
z � .

Case 2. x
�
0 � and x

�
1 � have the same sign, but not the same as x

�
2 �

and x
�
3 � . Then we can select X

�
z �	� sign 3 x � 0 �54 P3

�
z � .

Case 3. x
�
0 � and x

�
1 � have the different sign, and the sign of x

�
0 �

is the same as x
�
2 � and the sign of x

�
1 � is the same as of x

�
3 � . Then

we can pick X
�
z ��� sign 3 x � 0 �64 P2

�
z � .

Case 4. x
�
0 � and x

�
1 � have the different sign, and the sign of x

�
0 � is

the same as x
�
3 � and the sign of x

�
1 � is the same as of x

�
2 � . In this

situation, to make a choice we need also the sign of the diference:� x � 0 ���7
8� x � 3 ���9�:� x � 1 ���;�<� x � 2 ����� sign 3 x � 0 �54=3 x � 0 � 
 x
�
1 � 
 x

�
2 � 
 x

�
3 �54 �

Case 4a. If � x � 0 ���6
>� x � 3 ���=�?� x � 1 ���=�?� x � 2 ����� 0, then we can choose
X
�
z �	� sign 3 x � 0 �54 P5

�
z � .

Case 4b. If � x � 0 ���5
@� x � 3 �����A� x � 1 ������� x � 2 ���#$ 0, then we can select
X
�
z �	� sign 3 x � 0 �54 P6

�
z � .

Simulations show that for M � 3 we can find situations that
no ordering of real sequences will produce a minimum-phase se-
quence. One example is presented in Table 1. Our simulations also
verify that the sequences where any kind of ordering fails consists
of samples with an odd number of plus and minus signs. In such sit-
uation, a special case appears when the sum of the numbers is zero,
when the zeros may lie outside the unit disk or on the unit circle. It
follows also that for M � 3 and for the case complex sequences one
can find sequences that no ordering will provide a minimum-phase
sequence.

Finally, we shall analyze whether a similar situation as men-
tioned for real sequences in Proposition 2, happens also for complex
sequences. i.e. for any set of complex numbers ' x

�
0 �B� x � 1 �B� x � 2 ��( ,

there is a choice of ordering them such that the corresponding new
sequence is a minimum-phase one. The Schur-Cohn conditions are
the following (Appendix A.2):**** x � 2 �

x
�
0 �

**** $ 1;

******* x C 1 D
x C 0 D � x C 2 D

x C 0 D  x E=C 1 D
x E C 0 D

1 � ***
x C 2 D
x C 0 D *** 2

******* $ 1 � (6)
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x
�
0 � x

�
1 � x

�
2 � x

�
3 � z1 z2 z3 max

i � 1 F 2 F 3 'G� zi � (
-1 -2 -3 5 -1.4473 + 1.8694j -1.4473 - 1.8694j 0.8946 2.3642
-1 -2 5 -3 0.8067 + 0.4236j 0.8067 - 0.4236j -3.6135 3.6135
-1 -3 -2 5 -1.9521 + 1.3112j -1.9521 - 1.3112j 0.9042 2.3516
-1 -3 5 -2 -4.2780 0.6390 + 0.2432j 0.6390 - 0.2432j 4.2780
-1 5 -2 -3 4.3885 1.1873 -0.5758 4.3885
-1 5 -3 -2 4.1642 1.2271 -0.3914 4.1642
-2 -1 -3 5 -0.7017 - 1.5084j -0.7017 + 1.5084j 0.9033 1.6636
-2 -1 5 -3 -2.0637 0.7818 - 0.3400j 0.7818 + 0.3400j 2.0637
-2 -3 -1 5 -1.2093 - 1.1222j -1.2093 + 1.1222j 0.9186 1.6497
-2 -3 5 -1 -2.5550 0.8149 0.2401 2.5550
-2 5 -1 -3 1.6180 1.5000 -0.6180 1.6180
-2 5 -3 -1 1.3669 - 0.5203j 1.3669 + 0.5203j -0.2338 1.4625
-3 -1 -2 5 -0.6257 - 1.1933j -0.6257 + 1.1933j 0.9180 1.3474
-3 -1 5 -2 -1.6180 0.6667 0.6180 1.6180
-3 -2 -1 5 -0.7954 - 1.0820j -0.7954 + 1.0820j 0.9241 1.3429
-3 -2 5 -1 -1.7368 0.8423 0.2279 1.7368
-3 5 -1 -2 1.0756 - 0.4678j 1.0756 + 0.4678j -0.4846 1.1729
-3 5 -2 -1 0.9717 - 0.5102j 0.9717 + 0.5102j -0.2767 1.0975
5 -1 -2 -3 1.0821 -0.4410 - 0.6000j -0.4410 + 0.6000j 1.0821
5 -1 -3 -2 1.0886 -0.4443 - 0.4123j -0.4443 + 0.4123j 1.0886
5 -2 -1 -3 1.0893 -0.3446 - 0.6573j -0.3446 + 0.6573j 1.0893
5 -2 -3 -1 1.1060 -0.3530 - 0.2371j -0.3530 + 0.2371j 1.1060
5 -3 -1 -2 1.1070 -0.2535 - 0.5450j -0.2535 + 0.5450j 1.1070
5 -3 -2 -1 1.1179 -0.2589 - 0.3345j -0.2589 + 0.3345j 1.1179

Table 1: Example: ' x
�
0 �B� x � 1 �B� x � 2 �B� x � 3 ��(H�"'+� 1 ��� 2 ��� 3 � 5 ( , when no ordering will provide a minimum-phase sequence.

To simplify our analysis, let us consider x
�
1 �I� x

�
0 �� ρ1e jθ1 and

x
�
2 ��� x

�
0 �� ρ2e jθ2 , where ρi

� 0 � i � 1 � 2. The previous condi-
tion (6) can be written as follows:

ρ2 $ 1;

***
ρ1e jθ1 � ρ1ρ2eθ2 � θ1

*** $ 1 � ρ2
2
� (7)

The last inequality is valid whenever:

cos
�
2θ1 � θ2 �&� 1 
 ρ2

1 �KJ 1 � ρ2
2

ρ1 L 2

2ρ1

� (8)

Note that the right-hand side of (8) is greater than 1, if ρ1 � 1 
 ρ2
and smaller than -1 , if ρ1 $ 1 � ρ2. It follows:

Proposition 4 For any set of complex numbers ' x
�
i ��� i � 0 � 2 (

which may be phasors of a triangle, there is a choice of ordering
them such that the corresponding new sequence is a minimum-phase
one.

A. SCHUR-COHN STABILITY TEST

A.1 Schur-Cohn recursion

Let AM
�
z � be a complex polynomial of order M in z � 1:

AM
�
z �	� αM

�
0 �+
 αM

�
1 � z � 1 
����
 αM

�
M � z � M � αM

�
0 ��� 1 �

All the zeros of AM
�
z � lie inside the unit circle if and only if � km � $

1, for m � M � M � 1 ���� � 1, where [7]:

km � αm
�
m � ; Bm

�
z ��� z � mA Mm �

z � 1 �B�
Am � 1

�
z �	� Am

�
z �G� kmBm

�
z �

1 ��� km � 2 �

A.2 Second order polynomial

For a second order complex polynomial in z � 1, the Schur-Cohn re-
cursion is the following one:

k2 � α2
�
2 � ; B2

�
z �	� α M2 � 2 ��
 α M2 � 1 � z � 1 
 α2

�
0 � z � 2 �

A1
�
z �	� A2

�
z �.� k2B2

�
z �

1 �A� k2 � 2 � 1 � α2
�
1 �G� α2

�
2 � α M2 � 1 �

1 ���α2
�
2 ��� 2 z � 1 �

and all the zeros lie inside the closed unit disk if and only if�α2
�
2 ����$ 1;

**** α2
�
1 �.� α2

�
2 � α M2 � 1 �

1 ���α2
�
2 ��� 2

**** $ 1 � (9)

A.3 Third order polynomial

For a third order real polynomial in z � 1, the Schur-Cohn recursions
are the following:

k3 � α3
�
3 � ;B3

�
z ��� α3

�
3 ��
 α3

�
2 � z � 1 
 α3

�
1 � z � 2 
 z � 3 �

A2
�
z �	� 1 
 α3

�
1 �G� α3

�
2 � α3

�
3 �

1 � α2
3

�
3 � z � 1 
 α3

�
2 �G� α3

�
1 � α3

�
3 �

1 � α2
3

�
3 � z � 2 �

k2 � α3
�
2 �G� α3

�
1 � α3

�
3 �

1 � α3
�
3 � 2 ;

B2
�
z �	� α3

�
2 �G� α3

�
1 � α3

�
3 �

1 � α2
3

�
3 � 
 α3

�
1 �G� α3

�
2 � α3

�
3 �

1 � α2
3

�
3 � z � 1 
 z � 2 �

A1
�
z �	� 1 
 α3

�
1 �G� α3

�
2 � α3

�
3 �

1 � α2
3

�
3 �+
 α3

�
2 �G� α3

�
1 � α3

�
3 � z � 1 �

and all the zeros lie inside the closed unit disk if and only if�α3
�
3 ����$ 1;

**** α3
�
2 �.� α3

�
1 � α3

�
3 �

1 � α3
�
3 � 2

**** $ 1;***** α3
�
1 �.� α3

�
2 � α3

�
3 �

1 � α2
3

�
3 ��
 α3

�
2 �G� α3

�
1 � α3

�
3 �

***** $ 1 � (10)
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B. PROOF OF LEMMA 1

At least one of the numbers has the same sign as the sum A 
 B 
 C,
otherwise the sum of all three will have a different sign than of the
every composing number.

Certainly, this number is A or B. Indeed, if A and B have both
the same sign, but opposite sign with A 
 B 
 C, it results that�

A 
 B � � A 
 B 
 C �N$ 0 � (11)

By substituting A �O�A � signA, B �O�B � signA, C �O�C � signC, inequal-
ity (11) becomesP �A �5
Q�B � � � �A �5
Q�B �5
Q�C � signC

signA R $ 0 �
which cannot be true as we have �A � �)�B � �!�C ��� 0.

Now, suppose that no one of inequalities from the statement are
satisfied; it follows that we have
1. �B � � �A 
 C � ;
2. �C � � �A 
 B � ;
3. �A � � �B 
 C � .

Taking into account that for real numbers we have � x � 2 � x2, we
find:
1. B2 � �

A 
 C � 2;
2. C2 � �

A 
 B � 2;
3. A2 � �

B 
 C � 2.
By adding the first two inequalities, and the last two inequalities,
respectively, we get:

A
�
A 
 B 
 C �&S 0; B

�
A 
 B 
 C �NS 0 �

which cannot be true as we have shown before.

C. PROOF OF LEMMA 2

We start with the first part of the Lemma. It can be easily seen that
P2

� � z �N�2� P1
�
z � and P4

� � z �&�2� P3
�
z � . Moreover, P1

�
z � satisfies

the Eneström-Kakeya theorem. It remains to show that P4
�
z � has all

the zeros inside the unit circle. This is equivalent to prove that the
polynomial:

A3
�
z �	� 1 
 α3

�
1 � z � 1 
 α3

�
2 � z � 2 
 α3

�
3 � z � 3 �

satisfies the conditions of Schur-Cohn, when

1 � α3
�
2 ��� B

A
� α3

�
1 ��� C

A
� α3

�
3 ��� D

A
� 0 �

From Appendix A.3 we need to prove the inequalities:**** D
A

**** $ 1;

***** B
A � C

A  D
A

1 �@T D
A U 2

***** $ 1;

***** C
A � B

A  D
A

1 �QT D
A U 2 
 B

A � C
A  D

A

***** $ 1 � (12)

Note that the terms

D
A

;
B
A

� C
A

 D
A
� 1 � D

A
� 1 � P

D
A R 2 
 B

A
� C

A
 D

A

are all positive. Furthermore,

1 � P
D
A R 2 � B

A
� C

A
 D

A
;

1 � P
D
A R 2 
 B

A
� C

A
D
A

� B
A

� C
A

 D
A
�

which ends the prove of the first part of our Lemma.

For the second part of this Lemma, we proceed as before. For
P5

�
z � the stability conditions are:**** D

A

**** $ 1;

***** � B
A 
 C

A  D
A

1 � T D
A U 2

***** $ 1;***** � C
A 
 B

A  D
A

1 � T D
A U 2 � B

A 
 C
A  D

A

***** $ 1 �
Note that the terms

D
A

;
C
A

� B
A

 D
A
� 1 � D

A
� 1 � P

D
A R 2 � B

A

 C

A
 D

A

are all positive. Furthermore,

1 � P
D
A R 2 � B

A
� C

A
 D

A
�

However, the last stability condition:

1 � P
D
A R 2 � B

A

 C

A
D
A

� C
A

� B
A

 D
A
�

is equivalent with
�
A � D � � A 
 D � B � C ��� 0 or A 
 D � B � C � 0

as A � D.
Now, suppose that the reverse is happened A 
 D � B � C $ 0

and let analyze the stability conditions for P6
�
z � :**** D

B

**** $ 1;

***** C
B � A

B  D
B

1 �QT D
B U 2

***** $ 1;***** � A
B 
 C

B  D
B

1 �@T D
B U 2 � C

B � A
B  D

B

***** $ 1 �
or in an equivalent form:

D $ B;
D2 � B2 $ BC � AD $ B2 � D2;� B2 
 D2 � BC 
 AD $ AB � CD $ B2 � D2 
 BC � AD �

which are all true if B 
 C � A 
 D.
This ends the proof of Lemma 2.
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