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ABSTRACT

The tectonic activities that precede significant earthquakes
release electromagnetic (EM) waves that can be used as
earthquake precursors. We have been observing EM radia-
tion in the ELF (extremely low frequency) band at about 40
observation stations in Japan for predicting significant earth-
quakes. The recorded signals contain, however, several noise
components generated from the ionosphere, human activity,
and so on. Most of the background noise in the captured sig-
nals is attributed to lightning in the tropics. In this paper, we
introduce a self-tuned state space model and a Monte Carlo
filter to reduce the noise. The good performance of the pro-
posed method is confirmed.

1. INTRODUCTION

It is well known that EM (electromagnetic) waves are ra-
diated from the earth’s surface before earthquakes[2],[3].
This data can be processed in several ways to predict earth-
quakes [4]-[7]. Given the importance of this subject, we have
been observing EM radiation in the ELF (extremely low fre-
quency) band at over forty sites in Japan. Our goal is to be
able to use EM precursor signals to predict earthquakes accu-
rately. The ELF band is suitable for detecting the precursor
signals, which are extremely weak.

The main source of prediction uncertainty is inaccurate
determination of the origin of a signal. This is because the
observed signals are contaminated with several noise com-
ponents such as lightning radiation, man-made noise, and so
on. Existing models, however, fail to adequately handle these
noises which yields observation errors. What is needed is a
model that can isolate the essential information from these
noises. Linear state space modeling and Kalman filtering
have been used in state estimation[8]. Earthquake prediction,
however, demands the application of nonlinear non-Gaussian
state space modeling because the observed signals are non-
linear and non-Gaussian.

This paper proposes new models to extract earthquake
precursors from ELF data. Generalized state space modeling,
which includes linear state space modeling as a particular
case, and Monte Carlo filter (MCF) are used to our proposed
model.

2. OBSERVING ELECTROMAGNETIC RADIATION

2.1 Observation System

This section describes the current observation system. It is
important to remove as many noise components as possible
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when initially collecting the data. For this purpose, the obser-
vation window is restricted to the Extremely Low Frequency
(ELF) band. Wide band observation might, in general, prove
to be more accurate. However, since many noise components
lie outside the ELF band, this restriction is reasonable and
provides relatively high signal-to-noise ratios.

Given that commercial power supply systems in Japan
use either 50 Hz or 60 Hz, we tuned to 223 Hz (a prime
number) with 1 Hz bandwidth. We used about 40 observa-
tion stations installed throughout Japan. Each observation
station has three axial loop antennas with east - west, north
- south and vertical orientations. The three antennas observe
the variation in magnetic flux densities. The collecting cir-
cuits average the received signals over 6 second periods.

2.2 Observed Signal’s Feature

Even though the observation stage eliminates many noise
sources, the signal still contains several noise components.
The dominant background noise is the radiation from trop-
ical lightning, which is reflected between the ionized layer
and the surface of the earth. Therefore, all data sets show a
strong correlation and a daily variation. As lightning events
are common in the tropics, the background noise is assumed
to a Gaussian random noise with normal distribution (statis-
tically). There are seasonal trends; about 1 to 2pT /+/Hz in
the summer, and 0.3 to 1p7/ v/Hz in the winter (Northern
Hemisphere).

3. STATE SPACE MODELING AND MONTE
CARLO FILTER

3.1 State space modeling

To extract new knowledge from observed time-series data it
is critical that the model matches the target’s features. This
paper uses an unified solution method based on a state space
model. If y, is a time series of d), dimensions, the state space
model of the linear model is

Xp = ann,1+Gnvn (1)
Yo = Hpx,+wy, ()

where 7 is time and x,, is a time series of d, dimensions. v,
and w,, are, respectively, d, and d,, dimensional white Gaus-
sian noise (WGN) with variance-covariance matrix @, and
R,. In addition, F,, G, and H,, are d, X d,, d, X d, and
d, x d, dimensional matrices respectively. This model can
represent various time series models. Furthermore, the state
of the model can be estimated by Kalman filtering.
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If v, and w, follow arbitrary probability distributions,
state space modeling would be nonlinear and non-Gaussian
and be represented as follows:

x, = F(x,_{,v) 3)
Yo = H(xp,wn) “4)

where v, and w, are WGN according to probability density
function ¢(v) and r(w), respectively. In general, F and H are
nonlinear functions. It is known that the probability distri-
bution of the state p(x,|¥ ;) can be estimated recursively as
follows:

[ one-step-ahead prediction |

pxalY, ) /qxn|xn DpealY,_y)dx, (5)
[ filter ]
r(ynlen) p(x,_1 1Y, _1)
p(x,|Y,) = (6)
) =y, )
[ fixed interval smoothing |
p(xa|Yy) = p(xa|¥n)
Pl n+1|Y q(x, 1 |xn)
dx, . @)
/ n+1‘Y) nl
where ¥ ; Tepresents measurement data up to time j:
Y, ={ o b ®)

3.2 Monte Carlo Filter

The MCF was proposed for nonlinear/non-Gaussian

models[1]. In the MCF, probability distributions used in

state estimation are approximated by m particles as follows:
e prediction

{Pﬁzl)v"'vp;(qm)} (x,,| 1)

° ﬁlter

{ RTEN }Np

e system noise

{v21)7_..,v;n1)} ~ g (vn).

It is not necessary to approximate a distribution of the ob-
servation model by particles, because approximate quantities
are calculated by substituting observed data and particles into
the system model. State estimation is carried out by repeating
the following one-step-ahead prediction and filter process:

[ one-step-ahead prediction ]
Calculate particles {p (1)

(x| ¥y)

} representing the pre-

diction dlstrlbutlon p(x,,| ) usmg {f<1 R ffl”z} and
(Do wlm) as follows:

P =F (£ ). ©)
[ filter ]

Calculate the likelihood ") of particle p{?) using observation
data y, and observation noise distribution as follows:

af = p (ol

r(h_1 (y,,,p,&”)) (10)

Calculate particles f,(j) of filter distribution by resampling

particles pfj> in accordance with the following probabilities:

()
)@=
P”(fn Pn) G,El)-i-----i—an(’")’l L---,m  (11)

p(x,|Y,_,) and p(x,|Y,) at all time n = 1,---, N can be es-
timated by calculating, from the initial condmon, P(x0Yy),
and by repeating the one-step-ahead prediction and filter pro-

cess.
In addition, MCF can be extended to smoothing in prin-

ciple. Let (si"‘>rl7--~,sf1"‘>n)T be instances of the i-th of si-

multaneous distribution p(x,,---,x,|¥,), smoothing can be
realized by resampling all particles of the past {(S§l|)n—1’
. s (N =1,

S 0P ,m} by the same weight used in

the case of filtering, where 7 represents transposition.

4. THE MODEL OF OBSERVED DATA
4.1 Time-varying variance model

Fig.1 shows the level of EM radiation captured over a 10
day period up to February 19th in 2001, at Nannoh station
in Gifu. The horizontal axis represents days, and the vertical
axis is the level of EM radiation. An earthquake of magni-
tude Mj 5.3 occurred on the 23rd of February 2001 at latitude
34.8 north and longitude 137.5 east. A precursor signal was
observed between 16th and 19th.
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Figure 1: Raw data captured at Nannoh station in Gifu.

The observed data contains some extemporaneous
noises, most of which are due to human activities or the ob-
servation system. The one-dimensional random walk model
used to reduce these outliers is given by

a1 (12)

t, = t

Y = tptwy (13)
. The Cauchy distribution, which is a heavy-tailed distribu-
tion, is selected for observation noise:

rw) =

T

mw? + 12) (4
where T is a scale parameter. In addition, the distribution of
the system noise is also assumed to follow a Cauchy distri-
bution because the observed signal jumps when the precursor
occurred. Thus the state space model can be represented as a
linear Gaussian state space model:

x, = Fx,
Yn =

,1+Gvn (15)
Hx, + Wi (16)
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wherex, =t,, F=G=H=1,v, =v,.

Furthermore, the variance of the observed signal clearly
increases after the 17th in Fig.1. Therefore, time-varying
variance modeling based on the self-tuned state space model
is used to deal with the change in the variance.

In the self-tuned state space model, unknown parameters,
which are contained within the state vector, can be estimated
as well as the state. To be more precise, the parameter vector
0, = [log 12 log 2, ]” is added to state vector x,, as follows:

=] x; 9; ]T. 17)

This allows state estimation to become possible by changing
the transition matrices in accordance with new state vector z,,

as follows:
110 0 110 0
F=|0[T 0|,6=|0][1 0], (18)
0/0 1 00 1
H:[1|00],vn:[vn v voz}. (19)

By using the self-tuned state space model, parameter estima-
tion requires only one filtering and smoothing step.

In addition, a part of the self-tuned state space model is a
stochastic difference model:

6,=6,  +u (20)

whereu =[v, v, ]7. Therefore, this model can estimate
the variation even when parameter 6 changes with time.

The trend of the observed signal, given by the self-tuned
state space model, is shown in Fig.2. Additionally, estimated
observation noise is shown in Fig.3.
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Figure 2: Smoothed results of self-tuned state space model.
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Figure 3: The variance of the observation noise.

Note that the variance surges at the beginning of the 18th
and is large until the middle of the 19th. On the other hand,
the trend in Fig.2 changes widely independent of the vari-
ance.

4.2 Daily variation removal

Trend estimation based on the self-tuned state space model
was described in the above section. However, the observed
signal still contains undesired signals. One of them, called
global noise, is due to lightning in the equatorial region.
This noise shows a daily variation due to ionospheric fluctu-
ation. To express this noise, a term representing ionospheric
effectl, is added to equation(13) as follows:

Yn = Ihtl+wy (2D
o=t 4w (22)
L, = ai,+b (23)

where i, represents the ionosphere’s height. This height is
calculated using IRI(International Reference Ionosphere).

This extended model is described as the following state
space model:

[1 iy 1], (24)

00
10]. 25)
0 1

The corresponding self-tuned state space model is

X F 0 0 x, |
log 72 = |10 10 logt2 |
log o 0 0 1 loga? ,
G
+1 0 |w, (26)
0
Xn
yo = [Hy, 0 0] logt? | +w,.
log 0?2
27

Fig.4 shows the trend as determined by this model and the
observed signal. Note that the daily variation disappeared,
especially at midday on the 18th. In addition, the leading
edge of the precursor signal, which was observed to com-
mence on the 18th, is precisely extracted.

trend

T

QH/l M\qu NJL M J\ I

10 1" 12 13 14 15 16 17 18 19 2
day

Figure 4: Trend component estimated by proposed model.
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5. CONCLUDING REMARKS

A stochastic model for extracting earthquake precursor sig-
nals has been proposed. Automatic outlier removal and iden-
tification of trend swings were made possible by using a self-
tuned state space model and MCF (Monte Carlo Filter).
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In addition, a term representing the ionospheric effect
was added to the random walk model. This term depends
on the ionosphere’s height, which can be obtained from IRI.
Smoothed results verified the usefulness of this proposed
model.

One remaining problem is to remove the ionospheric ef-
fect (global noise) more completely.
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