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ABSTRACT

Multiple-Input Multiple-Output (MIMO) signal processing
combined with Orthogonal Frequency Division Multiplex-
ing (OFDM) is a widely accepted solution to achieve the
high bit rates that new communication standards require
in frequency-selective wireless channels. In recent years,
a new Frequency-Domain Equalized (FDE) Cyclic-Prefixed
Single-Carrier (CPSC) block transmission system has been
proven to achieve similar performance to OFDM for coded
systems with the same overall complexity, avoiding its main
drawbacks and becoming a candidate for future wireless
standards. In this paper, a FDE CPSC spatial multiplex-
ing system is analyzed and compared to OFDM. The appli-
cability of different frequency-domain MIMO equalization
and detection schemes is evaluated. Simulation-based per-
formance results prove the potential of these techniques and
highlight that FDE CPSC can equal or outperform OFDM in
uncoded and high coding rate spatial multiplexing systems,
as it has been shown in the literature for the SISO case.

1. INTRODUCTION

As new wireless communication network standards are be-
ing defined, the demand for higher throughput is growing
enormously. Recent wireless local (WLAN) and metropoli-
tan (WMAN) area network standards such as IEEE 802.11a,
802.11g, 802.16a and ETSI HIPERLAN/2 have chosen
Orthogonal Frequency Division Multiplexing (OFDM) to
overcome the wireless channel’s high frequency selectivity.
Newer not yet defined WLAN standards, such as 802.11n,
aim to reach data rates of up to 300 Mbps. In order to achieve
these high bit rates, Multiple-Input Multiple-Output (MIMO)
signal processing techniques become necessary.

Two basic approaches have been studied to enhance
OFDM with MIMO: Space-Time Coding (STC) and Spatial
Multiplexing (SM) [1]. STC increases the diversity order of
the communication system by coding over the different trans-
mission antennas, which leads to a better performance. On
the other hand, SM transmits independent data streams on
each antenna simultaneously, thus allowing greater through-
puts [2, 3].

Although OFDM has been included in many standards
due to its simple equalization, alternative cyclic-prefixed
or zero-padded single-carrier (SC) block transmission tech-
niques have been proposed and developed in recent years
[4, 5]. SC transmission avoids OFDM’s three main draw-
backs: Peak-to-average ratio of the signal power, frequency
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Figure 1: Wireless FDE CPSC transmission and reception
systems.

offset sensitivity and no multipath diversity in uncoded sys-
tems. The most simple and interesting of these SC techniques
is the Frequency-Domain Equalized (FDE) Cyclic-Prefixed
Single-Carrier (CPSC) transmission system. As it can be
seen in Fig. 1, its overall complexity is similar to an OFDM
system. As the equalization is done in the frequency domain,
FFT and IFFT blocks are required in reception. The addition
of the cyclic prefix avoids Inter-Block Interference (IBI) and
transforms the linear convolution of the signal and the chan-
nel into circular, i.e., a product in the frequency domain. This
system has been proven to fairly outperform OFDM for un-
coded systems and yields similar BER performance in coded
transmissions [4]. A very interesting feature of CPSC lies
on the fact that the main complexity belongs to the receiver
part, so it can be combined with OFDM, allowing asymmet-
ric systems where most of the complexity resides at one side
(base station, access point, etc.), as it has been proposed in
new 802.16 proposals [6].

This paper discusses the frequency-domain equalization
and detection of CPSC spatial multiplexing systems. The ap-
plicability of the main MIMO equalization techniques is ana-
lyzed and their implementation is compared to OFDM based
MIMO systems. The BER performances of both systems are
evaluated with simulations.

The layout of this paper is as follows: Section 2 details
the evaluated MIMO equalization techniques. In Section 3
the FDE CPSC-based MIMO transmission and reception sys-
tems are introduced. Section 4 shows the most important
simulation results and some conclusions are drawn in Sec-
tion 5.

2. MIMO EQUALIZATION AND DETECTION
TECHNIQUES

Fig. 2 shows a single-carrier spatial multiplexing system
for a frequency-flat channel with additive white Gaussian
noise (AWGN). This model will be extended to a frequency-
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Figure 2: Flat MIMO system

selective channel case in Section 4. The system has M trans-
mit and N receive antennas. The path loss from antenna m
to antenna # is represented as /,,,. The sampled baseband
system of a flat MIMO channel can be represented in matrix

notation as:
rf\/ESI:Is+n (1)
VM

where r is an Nx1 vector containing the signal received in
each antenna, s is an Mx1 vector with the signals transmit-
ted simultaneously at each transmission branch and n is an
Nx1 vector containing channel’s AWGN. Ej is the transmit-
ted signal power and H is a NxM channel matrix, defined as:

hin hi ... huy
hyt hw hnm

2.1 Linear non-OSIC MIMO detection

Maximum Likelihood (2) should be the optimal detection
method for spatial multiplexing. However, it is computation-
ally too complex due to the calculation of the output of S¥
possible input vectors, where S is the number of symbols in

the constellation.
z 2
r—/ —Hs ()
M F

MMSE (Minimum Mean Squared Error) and ZF (Zero-
Forcing) [7] are simpler solutions, based in the product:

>
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s
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with a = NoisePower /Signal Power. * and T stand for con-
jugate transpose and pseudo-inverse respectively. MMSE of-
fers much better results than ZF in AWGN channels, but its
performance is still quite far from optimal for N = M [7].

2.2 Non-linear V-BLAST (OSIC) detection

An OSIC (Ordered Successive Interference Cancellation)
based algorithm has been proposed in [8] to overcome the
limitations of previous methods with relatively low complex-
ity and has been named ZF-V-BLAST detection. It is based
in the iteration of three steps:

1. Ordering: Determine the transmit antenna & with greatest
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Figure 3: Frequency-Domain Equalized MIMO spatial mul-
tiplexing transmission and reception system.

SNR from the estimated channel, selecting the row (G), of
smallest norm of the nulling matrix G:

k= argmin 1G> G =Gzr (©)
2. Nulling and slicing: Detect transmitted symbol at antenna
k §ki
ye=((G))"r (7)
Sie = argmin S — | (8)
k

3. Cancellation: Remove the effect of the detected symbol
from received signal vector and its column Hy, in the channel

matrix:
[E
=r—4/—H 9
r=r 7 Sk )

H,, =0 VYm=k (10)
Note that the diversity order increases by one in each itera-
tion. Other V-BLAST detection algorithms such as MMSE-
VBLAST or SOMLD (Successive Ordered Maximum Like-
lihood Detection) differ from ZF-V-BLAST in the calcula-
tion of the G matrix in (6) and the ordering criterion [3, 7].

3. FREQUENCY-DOMAIN EQUALIZED
CYCLIC-PREFIXED SINGLE-CARRIER MIMO
SYSTEM

The baseband flat MIMO channel model in (1) can be easily
extended for a L tap frequency-selective channel:

L
r(k) = \/gzﬁ(z)s(k—l)m(k) (11)
=1

The addition of the cyclic prefix avoids IBI and trans-
forms the linear time convolution of the input signal and the
channel response into a circular convolution, thus the model
in (11) can be modelled as a product in frequency domain.
This way a flat MIMO channel is obtained for each one of
the Nf FFT frequency points of Fig. 3:

E,

R() =\ H(ISU) +N() (12)
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Figure 4: FDE MIMO equalization and detection. A MIMO
equalizer is employed at each frequency.
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Figure 5: MIMO V-BLAST per-antenna signal detection and
decision feedback.

R, H, S and N are the Nf-point FFT transforms of r, H,
s and n, respectively. Note that the MIMO equalization is
not done on the information bearing symbols s(k), but on the
frequency-domain FFT points S(f), so an IFFT is required
before the symbol detection. This means that all symbols
from an antenna must be equalized before they can be de-
tected. This is particularly important for V-BLAST detec-
tion, as it will be shown later.

For the MIMO detection techniques that do not require
any decision feedback, such as ZF or MMSE, the frequency-
domain MIMO detection requires N f MIMO equalizers, i.e.,
one for each of the FFT output points, as it can be seen in
Fig. 4.

For MIMO equalization techniques requiring detected
symbol feedback, such as ZF-V-BLAST or MMSE-V-
BLAST, FDE CPSC implies several problematic changes be-
cause the IFFT and the FFT operations appear in the feed-
back chain as it can be seen in Fig. 5. Equations (7) and (8),
slicing and cancellation, become:

§ = argmin||§; — iffi(Se) | (13)
Dy = ffi(8x)
R(f) =R(f) — \/Eﬂk(f)nkm (14)

where s is a whole block transmitted from antenna £ in the
time domain. R and S are frequency-domain received and
equalized signal and Dy, is the FFT transform of the detected
symbol block §;. As it can be deduced from (13) and (14),
the equalization and detection must be done per antenna and
in a whole block basis due to the IFFT and FFT operations
involved in the feedback chain. Thus, the antenna ordering
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Figure 6: BER performance for uncoded QPSK MIMO FDE
CPSC and MIMO OFDM with MMSE equalization.

process in (6) will be done for a whole time block, instead of
per each FFT point in the frequency domain, like in OFDM,
as it would be desirable to reduce the effects of frequency se-
lectivity. This per-block ordering can slightly reduce the per-
formance improvement of the OSIC (V-BLAST) algorithm.

4. SIMULATION RESULTS

4.1 Simulated System Parameters

Two different spatial multiplexing transmission systems are
simulated: MIMO FDE CPSC and MIMO OFDM. The main
simulation parameters are based on the Hiperlan/2 standard.
For OFDM, this means a 20 MHz bandwith channel with 64
subcarriers, 48 of which are used to carry information sym-
bols and 4 are reserved for pilot tones. The OFDM symbol
duration is 4 us, 0.8 of which are the cyclic prefix. For CPSC,
blocks of 64 symbols are sent with a cyclic prefix of 16 sym-
bols at each transmission branch. The symbol duration is 50
ns and a 64-point FFT is employed in equalization. QPSK
modulation is analyzed. Both uncoded and coded transmis-
sions are compared. Perfect channel knowledge is assumed
at reception.

A stochastic MIMO Rayleigh frequency-selective chan-
nel [9] is used with an rms delay spread of 100ns (channel
model B from Hiperlan/2 specification). The discrete chan-
nel impulse responses have exponentially decaying power
taps and there is no antenna correlation. Three antenna lay-
outs are compared in order to evaluate how the antenna num-
ber and diversity affect BER performance: 1x1 (SISO), 4x4
and 3x4.

4.2 Results

The BER performance versus SNR per receive antenna is
depicted in Fig. 6 for uncoded QPSK with several antenna
setups with no correlation and MMSE detection technique.
MIMO-FDE-CPSC (continuous line) clearly outperforms
MIMO-OFDM (dotted line) in uncoded transmissions, as
suggested in [4, 5] for SISO systems. When N = M the
BER performance degrades slightly with MMSE as the num-
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Figure 7: BER performance of the analyzed MIMO detection
schemes for 3x4 and 4x4 uncoded FDE-CPSC systems.

ber of transmission and reception antennas grows, but very
good BER results can be obtained if reception diversity is in-
creased. For example, 3x4 antenna setup outperforms SISO
BER transmitting at a three times higher bitrate.

Fig. 7 shows the BER performance of the MIMO equal-
ization schemes analyzed in Section 2 for 4x4 and 3x4 FDE
CPSC systems. V-BLAST algorithms are the ones which
offer the best performance. The diversity obtained by the
OSIC algorithm allows even to outperform the SISO results
for high SNR. The effect of including the FFT and IFFT in
the decision feedback of V-BLAST detection systems does
not degrade their BER performance. MMSE-V-BLAST al-
gorithm performs slightly better than ZF-V-BLAST.

In order to compare OFDM and CPSC, Fig. 8 shows the
BER performance results for MIMO coded systems. Trans-
mitted symbols are per-antenna coded (PAC) with an in-
terleaved 1/2 rate convolutional (Hiperlan/2 standard) code.
QPSK modulation and frequency-domain MMSE detection
are employed. Coding and interleaving give frequency diver-
sity to OFDM, whose BER performance becomes similar or
better to CPSC only for low coding rate frequency-selective
systems.

5. CONCLUSION

We have analyzed the extension and applicability of fun-
damental MIMO equalization and detection techniques
to FDE CPSC systems. ZF, MMSE, ZF-V-BLAST and
MMSE-V-BLAST algorithms have been evaluated for CPSC
and compared to MIMO-OFDM. BER performance simu-
lations for uncoded and coded QPSK spatial multiplexing
systems have been obtained and compared to OFDM for a
frequency-selective Hiperlan/2 standard channel. It has been
shown that MIMO equalization can be easily adapted to
frequency-domain equalized single-carrier transmission and
that this communication scheme can equal or outperform
MIMO-OFDM in uncoded and high coding rate systems.

BER vs SNR for 1/2 CODED MIMO OFDM and MIMO FDE CPSC (QPSK)
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Figure 8: BER performance comparison for coded MIMO
FDE CPSC and MIMO OFDM with MMSE equalization.
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