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1. ABSTRACT

Clustering algorithms belong to an area of research that has
many practical uses. Over the years, many different cluster-
ing algorithms have been proposed. Of these, the majority
that are in common use today tend to be based on mathe-
matical techniques which utilise the density of the data in
data space. This has advantages for many scenarios, how-
ever there are occasions where density based clustering algo-
rithms may not always be the most appropriate choice.

The Self-Organising Oscillator Network (SOON) is a
comparatively new clustering algorithm [1], that has received
relatively little attention so far. The SOON is distance based,
meaning that clustering behaviour is different in a number of
ways that can be beneficial. This paper examines the perfor-
mance of the SOON with a biological dataset taken from mi-
croarray experiments on the Cell-cycle of yeast. The SOON
is shown to be a useful addition to the available clustering
algorithms, being able to highlight small (but potentially sig-
nificant) clusters of interest in a dataset.

2. INTRODUCTION

Recently, there has been much interest in the develop-
ment of techniques suitable for unsupervised clustering.
The Kohonnen Self Organising Map (SOM) has been
perhaps one of the most popular unsupervised cluster-
ing algorithms, used in many different applications [2,
3, 4]. Other alternatives include K-means clustering [5]
and K-medioids [6].

Most of these techniques are density based; that is, the
method by which cluster centres are chosen is based in some
way around the density distribution of the data in dataspace.
The practical upshot of density based approaches is that the
centres chosen by the clustering techniques map the distribu-
tion of the data very closely, however they do not map the
distributions of data in areas where the density of the data
is low. With distance based clustering techniques, clusters
are determined by a distance parameter. For any given centre
point, all data points within a set distance will be regarded as
members of the cluster.

The SOON algorithms are distance based, which means
that they can select the number of clusters to match the data,
rather than attempting to fit the data to a predetermined num-
ber of clusters.

3. BACKGROUND

Clustering algorithms are becoming more common as tools
for use in many different real-life applications. In well
bounded and understood datasets, it is relatively easy to de-
termine how many different clusters should be found. Once

this number of clusters is known, then it is relatively trivial
to perform the clustering and interpret the results. However,
when data is either noisy or not easily separable (which is
often the case with many different real-world datasets, par-
ticularly of biological origin), it can be much more difficult
to determine with confidence the “correct” number of centres
for the clustering algorithm.

Cluster validation techniques can be used to attempt and
determine the best match for this, however in many cases
there is not necessarily a correct answer, and judging the
quality of the clustering results becomes something of an ab-
stract problem. Most clustering algorithms that find a prede-
termined number of clusters work on the basis of the density
distribution of the data in dataspace. Centres are placed at lo-
cations which correspond to the most dense areas of the data
in dataspace, creating a “gravity” effect, where high numbers
of datapoints in one area of dataspace will tend to attract one
or more cluster centres in an attempt to map this distribution.
Areas which are sparsely populated will tend to be neglected,
as there are not enough points in the vicinity to create suffi-
cient “gravity” to attract a cluster centre towards them.

The SOON differs from density based methods in the
way that the algorithm uses to determine what constitutes a
cluster. Simply expressed, the SOON defines a distance, δ0,
which acts as the determinant of the cluster. From a given
point, any other points which fall within the distance δ0 are
regarded as belonging to the same cluster, and will gradually
synchronise their phase values (and hence firing times).

4. THEORY

The SOON algorithm, first proposed by Frigui et al [1], has
its roots in a number of different biological processes that
share the same physical characteristics. Fireflies flash at ran-
dom when observed individually; however, when in large
groups, the fireflies exhibit the characteristic of firing to-
gether when in groups that are phyiscally close to each other.
Groups which are separated by distance will fire as disparate
groups, each synchronised within itself. Heart pacemaker
cells also share a similar behaviour, along with the menstru-
ation cycles of groups of women in close proximity to each
other. This behaviour, of self-organisation of components
with an oscilliatory nature, gives rise to the name of the al-
gorithm - the Self Organising Oscillator Network (SOON).

4.1 Oscillator basics

The basic unit of clustering under the SOON algorithm is the
oscillator. Mathematically, an oscillator is defined using the
equation

fi(φ) =
1
b

ln[1+(eb−1)φ ] (1)
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where b is a constant value used to control the curve of the
oscillator. The output of the oscillator, xi is bounded in the
range [0,1], for all values of fi(φ). This is achieved using a
limiting function

B(x) =

{
x if 0≤ x≤ 1
0 if x < 0
1 if x > 1

Oscillators which are physically close to each other
should over time synchronise together to fire as one. This
requires the clustering algorithm to adjust the phase of indi-
vidual oscillators such that the oscillators which are physi-
cally close will take on similar and then synchronised phase.
Some form of adjustment of the phase values is required in
order to allow this process to occur. As a final stage to one
iteration of the training algorithm, the output value of an os-
cillator will be adjusted x j(t+), using the formula

x j(t+) = B(x j(t)+ εi(φ j)) (2)

ε j(φ j), the coupling strength for a given phase φ j is the key
to the operation of the whole algorithm. At this stage, adjust-
ments are made to the state variables (and hence, ultimately
the phase values) by applying an adjustment which consid-
ers the distance an oscillator is from the winning oscillator.
Those oscillators physically near to the winning oscillator are
made more likely to fire at the same time as the winning os-
cillator by adjusting the phase towards that of the winning
oscillator, while those further away have the phase values ad-
justed so as to push them down the phase curve, away from
the winning oscillator. Dependent upon the individual prob-
lem under consideration, the exact formulation of the cou-
pling function used to calculate these adjustment values may
vary, however, for the problem under consideration in this
paper, the following coupling function was used.

εi(φ j) =


CE [1− (

d2
i j

δ0
)] if d2

i j ≤ δ0

−CI [(
d2

i j−δ0

δ1−δ0
)] if δ0 < d2

i j ≤ δ1

−CI otherwise

(3)

Having decided on a limit distance δ0, δ1 is set to be five
times δ0. The coupling function promotes all oscillators
which have a distance less than δ0, increasing the phase value
by CE , the constant of excitation multiplied by a fraction that
represents the distance between the winning oscillator and
the oscillator under consideration, and δ0. The phase of all
those with distance di j in the interval δ0 < di j ≤ δ1 are inhib-
ited by some fraction of CI , the coefficient of inhibition. All
values of di j > δ1 are hard limited to −CI . CE is typically
relatively small, of the order 0.1-0.2. CI is normally set to
the value CE/N, where N is the number of datapoints under
consideration, as any given datapoint is likely to be inhibited
more often than it is likely to be excited.

Control of the cluster size is achieved through the manip-
ulation of the δ0 parameter. Small values will lead to a high
number of small, tight clusters, while larger values of δ0 will
create a smaller number of larger clusters. Extremely large
values will cause only one cluster to be formed, as this will
swallow up all smaller clusters.

4.2 The SOON-2 Algorithm

Several variants of the SOON algorithms have now been pro-
posed, however all share a common basic form. The variant

algorithm used in this paper is the SOON-2 algorithm, which
incorporates modifications that make it suitable for use whitc
high quantities of data.

The SOON-1 algorithm uses all training points as initial
oscillators. By reducing this to a smaller number of centres,
and distributing them throughout the data space, a series of
prototypes can be created. These points may be either exist-
ing points in the training set, or alternately may be selected
to highlight specific areas of interest in data-space, increas-
ing the likelihood of clusters being created in that area. This
is of particular interest in microarray analysis, where certain
gene expression profiles may be of interest due to biological
or physiological processes that are thought to be of signifi-
cance in a particular operation.

Every datapoint under consideration is allocated an oscil-
lator. A series of prototypes are chosen such that they are dis-
tributed either evenly through the data, or in areas of specific
interest. The number of prototypes is normally significantly
less than the number of datapoints under consideration. All
prototypes start with a spheroid enclosure of the same ra-
dius, which is set as a parameter on commencement of the
algorithm. The algorithm determines which of the oscilla-
tors is the next to fire by examining the individual phases of
each oscillator and selecting the one with phase φi closest to
1; the nearest prototype to the winning oscillator is found,
and the distance of all datapoints to the nearest prototype is
calculated. The phase of all oscillators is increased by a set
amount (1−φi). Having adjusted all phases as necessary, the
new state xi of each oscillator is calculated using equation 1.
From the state variables, the coupling strengths (εi) are calcu-
lated using the coupling function (equation 3), which allows
the state variables to be adjusted based on the distance of
each oscillator to the winning oscillator. The state variables
are then adjusted using equation 2, giving the revised output
values. The new phase values can then be calculated using
the inverse of the oscillator function, i.e.

φ j = f−1(x j) (4)

At the end of this cycle of the algorithm, points which
were physically close to the oscillator which fired will move
closer together, gradually tending to synchronise, whilst
those which were further away will move away from the win-
ning oscillator. The newly synchronised oscillators are used
to adjust the centre of the nearest oscillator, and the process
repeats. Alternatively, certain oscillators will be too far away
from any others to form a cluster, and will essentially remain
as individual clusters. Dependant upon the noise inherent in
the dataset, this might lead to the construction of relatively
large numbers of individual oscillators, in the case of ex-
tremely noisy data, or in the case of clean data, relatively
few unsynchronised oscillators.

5. MICROARRAY DATASET

The microarray array data is taken from the Stanford Yeast
Cell-Cycle Project [7]. The number of clusters present within
this dataset is not clearly defined, as the data is not clearly
separable, however there are a number of groups present
within the data the represent different biological processes
within the cell cycle of the yeast organism. There have been
a number of papers which describe these clusters, along with
their biological meanings. The initial data consists of 17 ob-
servations over time on approximately 6400 different genes
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during the cell cycle process. After normalisation and pre-
filtering in order to remove minimally variant genes, the
number of genes available for consideration drops to just
over 1000 (1002 genes).

6. EXPERIMENTS

The SOON was tested using a Euclidean distance measure,
giving spheroid clusters. Using prototypes, set to one half
of the total number of datapoints available for clustering, the
algorithm was allowed to stabilise, whereupon the clusters
were examined. Any cluster with fewer than six members
was discarded. At all stages, the coupling function was kept
constant, as given in equation 3. The constant of excitation
was set to 0.1, with CI = CE/N = 0.1/1002. The value of δ0
was varied between 0.01 and 0.31 in increments of 0.05.

7. RESULTS & DISCUSSION

Figure 1 shows the results of a clustering run using the Eu-
clidean distance measure and the yeast data. The horizontal
axis of the plots represent the time course in ten minute in-
tervals, while the vertical axis represents the gene expression
magnitude after normalisation.

As can be seen, there are a number of different clusters
that make themselves clear as a result of the clustering. Clus-
ters 9 and 177 both show the same characteristics, containing
67 and 49 members in total. Clusters 36 forms a cluster con-
taining 12 members. Clusters 17 and 118 form a cluster with
41 and 10 members. Clusters 6, 50, 58, 74, 188 and 221 all
exhibit a broadly similar general trend where a low initial ex-
pression level is replaced by a sharp peak at around timepoint
10, followed by a decrease, and then a increase towards time
point 16.

These four groups of clusters broadly correspond to
phases G1, S, G2 and M respectively, as identified by Cho
[8] and Spellman [9]. Additionally, the clusters also match
fairly closely in shape to those identified by Tamayo [10].

Of interest is cluster 100 on the figure which describes
a small cluster of rather distinctive behaviour; the gene re-
mains predominantly stable around level 0 for most of the
experiment, however at timepoint 10 there is a sudden trough
to approximately -3 in magnitude. This occurs at the same
time as several other groups of genes are peaking in the op-
posite direction. A cluster with this form does not appear in
the results given by Tamayo[10] using a SOM; this may in
part be due to the fact that the variation filter used in these
experiments gave different results to that of Tamayo, selct-
ing 1002 genes rather than the 823 used in their experiments.
However, carrying out tests using a MATLAB based SOM
toolbox on the same dataset (Figure 2) also failed to highlight
this relatively small cluster as a point of interest - cluster 6
being the closest match. This gives an indication of the extra
information that the SOON algorithm can highlight within a
dataset.

Experiments with the other sizes of δ0 have shown that
the clusters 9 and 177 appear across the different results, in-
dicating that the algorithm is relatively robust, and choice of
the δ0 parameter is not absolutely crucial. Rather, it offers a
degree of control over the granularity of the clusters. This, of
course moves the problem of selecting the correct numbers to
one of selecting the most appropriate value of δ0, however, it
is felt that this offers more control over the clusters created
than for density based approaches.

8. CONCLUSIONS

The SOON is a clustering algorithm that would appear to
offer certain properties that are beneficial when examining
microarray data. Particularly, the ability of the algorithm to
generate an arbitray number of clusters dependent upon the
data, rather than pre-selecting a value is welcome. The al-
gorithm is also able to highlight small clusters of genes that
are physically close to high density areas of data with differ-
ent profiles. This allows the SOON to highlight clusters that
might not be as clearly visible using other clustering tech-
niques like the SOM.
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Figure 1: Clustering results using Euclidean distance of 0.2 on the yeast data
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Figure 2: Clustering results using a Self Organising Map
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