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ABSTRACT

In this paper, we address blind identification of an
ARMA model convolved with an impulse sequence via Max-
imum Likelihood (ML) approach. A Stochastic Expectation
Maximization (SEM) implementation of the criterion is con-
sidered. The problem of ARMA models with long impulse
response is addressed as well as the SEM initialization prob-
lem. The model estimation is performed in two steps : First,
a truncated estimate of the wavelet is obtained from a SEM
algorithm. Then improved wavelet estimation is achieved
by fitting an ARMA model to the initial MA wavelet using
the Prony algorithm. Simulation results show the significant
improvement brought by this approach in situations corre-
sponding to seismic data deconvolution.

1. INTRODUCTION

In this paper, we address the blind identification of an ARMA
impulse response convolved with an impulse signal. In par-
ticular, this situation arrives in seismic deconvolution, where
one tries to recover the geological structure of the under-
ground sedimentary layers from seismic data records [1].
As usually in this kind of situation, the seismic traces are
modeled as the filter output, that represents the transmitted
wavelet, whose input consists in a two components Gaussian
mixture: the Gaussian component with high variance models
the strong reflectivity at layers interfaces [2]. Recovering this
sequence from the data enables detecting the layers position
in the subsurface.

The wavelet estimation is an important step of the global
deconvolution procedure, because the result of deconvolu-
tion is sensitive to this estimation. In some practical inter-
esting experiments, the wavelet is quite long [1]. In such sit-
uations, the estimation of model parameters using classical
algorithms generally yields a high variance of the wavelet
estimator. The Higher Order Statistics (HOS) methods can
solve this problem, but they often lack robustness when smal
amounts of data are available [3, 4, 5]. In this paper, we con-
sider an alternative approach that permits to overcome this
problem within the framework of classical blind seismic de-
convolution techniques [6, 7].

The contribution of this paper lies in the study of the
wavelet initialization : a new criterion is proposed for ac-
curate estimation of the wavelet impulse response maximum
position, which is on important practical issue for accurate
wavelet estimation. Also, we apply an improved wavelet es-
timation [8]. More precisely, a robust Maximum Likelihood
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MA estimate of a truncated version of the wavelet is obtained
via a SEM approach, then an ARMA model is fitted to the
initial MA wavelet by means of a Prony algorithm.

Deconvolution is then achieved efficiently from this new
wavelet estimator by means of the MPM approach for single
trace deconvolution while in the multi-channel case this step
is no longer necessary.

The paper is organized as follows: Section
�

describes
the problem, while section � is devoted to wavelet initial-
ization for the SEM procedure. In section � , the improved
wavelet estimation is presented. The trace deconvolution is
treated in section � . In section � , we check in a simulation,
the significant improvement brought by this approach.

2. PROBLEM FORMULATION

The observed signal is of the form

���	� 
� � 
����
��� ��� ����� ��� (1)

where � ��� � � �!� 
��#" 
 is the wavelet finite impulse response
of length $ , % ��� � ���&� 
(')" * is the reflectivity sequence, and+,�-� � ���!� 
(')" * is the observation noise sequence, with vari-
ance .�/0 . Also, we note 1 �2�3�4�5�&� 
(')" * .

The reflectivity process % is described by a generalized
Bernoulli-Gaussian process [2], characterized by an underly-
ing state model 6 �,��7 � � � 
��8" * , with 7 � �:9 at high reflec-
tivity points and 7 � �<; at low reflectivity points. The cor-
responding reflectivity

� � is distributed according to a zero
mean Gaussian distribution with variance .(/' if 7 � �=9 or .�/�
if 7 � �>; : � �@?BA�C,�D;E� . /' � � �&9GFHAI�3C,��;J� . /� �K� (2)

where A is the probability of having a reflector at a given
position �ML(��7 � �=9����N9GFOLP��7 � �Q;����BAR� and .�/'	S .�/� .

The finite impulse response of the wavelet is modeled
as the ARMA systems. The observed trace for (p,q) order
ARMA (ARMA(p,q)) process is given by

� � �UT� � 
('RV
� � ��� � � � � �XW�Y 
��JZ Y

� �[� Y (3)

3. PARAMETER ESTIMATION

We address the blind deconvolution problem through the
classical Maximum Likelihood criterion [9, 10] which leads
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to calculate
������ ���	��

���������� � LP� 1�� � �!�)� (4)

where
�

is the parameter vector of interest.
The vector parameter

� � � � � A�� .�/� � .�/' � .�/0 � estimation
is obtained using a standard maximum likelihood criterion,
maximized thanks to an Stochastic Expactation Maximiza-
tion (SEM) algorithm [6].

4. IMPROVED WAVELET ESTIMATION

In some seismic experiments the wavelet impulse response� is quite long. In such cases, the mean square error of the
estimator is quite large. In particular, the last coefficients of� , which have small values, are poorly estimated. For this
reason, searching for a vector � with reduced length gener-
ally enables a good compromise between bias and variance
properties of the estimator.

However, performing the deconvolution with a truncated
wavelet will generate degradated performance for the reflec-
tivity sequence.

In order to improve the deconvolution performance, we
assume that the MA( $ ) wavelet model that has been esti-
mated by means of the SEM procedure described in the pre-
vious section is in fact a truncated version of the true wavelet,
of length $���� $ . The value of $ is not much critical. Sim-
ply, the envelope of the MA( $ ) impulse response should not
decay too much. Since $ � can be quite large in practice and,
often, the wavelet has an oscillatory shape, it can be modeled
efficiently as an ARMA(L(�D7 ) impulse response. In order to
estimate it from the initial MA( $ ) wavelet, we propose to use
the Prony method [11].

Initialization wavelet: It is well known that the non-
minimum phase structure of the wavelet h makes its estima-
tion complicated. In particular the wavelet estimation is not
robust to initialization. A simulated annealing version of the
SAEM algorithm [12] could be used to overcome this prob-
lem [7]. Here, we propose a deterministic procedure for ini-
tializing the MA( $ ) wavelet estimate. First, we initialize h
with the vector ���

�
�

and we perform the deconvolution for
each initialization ���

�
�
. Now, let us note �

� �:9 if
�� � has a

positive derivative at the origin, and �
� �-F 9 if it is negative.

It can be checked that � �-� � � � � 
(')" ��� changes of sign for the
values of  corresponding to local optima of the true wavelet.
A justification of this result is presented in the Appendix.
Simulations on several examples show the very good practi-
cal behavior of this technique. The retained solution for the
maximum position is chosen among the values  for which �
changes of sign, by selecting the one for which the Kurtosis
of the estimated reflectivity

�% is maximum.

5. DECONVOLUTION

When � has been estimated, the last step consists in a decon-
volution via an MPM approach that yields the final estimate
of the reflectivity sequence [6].

Note that, in situations where several traces are available
for the same reflectivity sequence but significantly distinct
wavelets, a multi-channel version of the SEM deconvolution
can be applied [13]. In this case both the parameters and the
reflectivity sequence are well estimated from SEM algorithm
and no additional MPM procedure needs to be employed.

6. RESULTS

In this section, we present simulation examples . Figure 1
and 2 represent the simulated reflectivity and observation
( .�/0 � 9"! ; �$# , A���;%! ;'& , .�/� � 9#; �)( , .�/' �2;%! 9 ). The true
wavelet and the function � introduced in the previous sec-
tion are given in Figure 3, 4 and 5 for distinct wavelets. Table
1 and Figure 5 show that the maximum position is correctly
recovered with the proposed procedure. Figure 6 shows the
improvement brought by the MA truncated wavelet + ARMA
extension modelization compared to a direct estimation of
the full length wavelet. Figure 7, shows the deconvolved re-
flectivity estimated to gether with the original reflectivity.
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Figure 1: simulated reflectivity sequence.
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Figure 2: simulated noisy seismic data. SNR=17dB.

maximum position 4 9 13 17
candidates (Fig. 4)

kurtosis 22.37 25.54 23.43 22.2

Table 1: estimated kurtosis at changes of � .
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Figure 3: ’-’: Marmousi wavelet ’...’: � .
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Figure 4: ’-’: Ricker’s wavelet’...’: � .

7. CONCLUSION

In this paper, we have proposed a new method to solve the
wavelet initialization problem in the SEM identification pro-
cedure. We have applied it to a recent method for blind iden-
tification of long ARMA models impulse response.

Appendix: SEM algorithm Initialization

In order to justify why the proposed criterion for maximum
position selection works efficiently, as shown in the simula-
tion part, let us recall, as discussed in section 4, that when the
impulse response � is initialized with one at the

�����
entry and

zeros at other entries, then the SEM algorithm converges to a
solution where the estimated � has its maximum at position�

. In other words, we can say that the SEM algorithm looks
for a solution that minimizes the norm error ��1 F�� ��� with
a maximum constraint at position

�
.

Let us rephrase this idea in the time continuous domain: we
are led to search for a solution � � that achieves minimum
error norm under the null derivative constraint � ��
	 �N; . In
mathematical terms, we are considering the following prob-
lem: �

�
��� � � � F � ��� � � � �� ��
	 �Q;%! (5)
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Figure 5: ’-’ true wavelet: ’...’: � .
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Figure 6: estimated wavelet for SNR=17dB.

Equivalently, problem (5) can be rewritten in the Fourier
transform domain:��� �� �
������� ���� �����RF �� ����� �� ����� � /�� �

� ��
	 � � � � �  ! ���#" /
��$&% � 	 �� � 	 ����� � � �Q;E� (6)

where �'I����� denotes the Fourier transform of ' ��(&� and ) is
the signals bandwidth. Using Lagrange multipliers (see for
instance [14]) and introducing real and complex variations of�� yields the following conditions upon the solution of prob-
lem (6), denoted �� � � 	 � ����� :�� � �+* "&,�- �� ����� �� � �
	 � �����RF �� �����/.
0 �� �����21 � A �  ! �3" /

��$&% �
	 �>;
�  5476 ,�- �� ����� �� � � 	 � �����RF ��I�����!.�0 �� �����81 �  A �  ! �3" /

�9$&% � 	 �Q;%!
(7)

Indeed, considering the functional: � �� � AR� � � � ���� �����RF �� ����� �� ����� � / � �� A �;� � �  ! ���<" /
�9$&% � 	 �� � 	 ����� � �I� (8)

and denoting by = ���> ����� any real valued small varia-
tion of �� ����� , the optimality constraint

: � �� � � 	 �
� = �� > � AR� F
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Figure 7: estimated reflectivity squence for SNR=13dB.: � �� � �
	 � � AR�P�>; leads to��� - �� ����� �� � �
	 � �����RF ��R�����!. �� 0 ����� � - �� ����� �� � �
	 � �����RF ��R�����/. 0 �� ������ A � � � �  ! ���<" /
�9$&% � 	 = �� > ����� � � �Q;E�

(9)
leading thus to the first equation of (7). The second equation
of (7) is derived in a similar way by considering imaginary
small variation of �� ����� . Then, summing both equations of
(7) yields- �� ����� �� � �
	 � �����RF �� �����/. �� ����� 0 �=F � � �  ! ���<" � /

��$&% �
	 � (10)

with
� � �&9 �  �&A�� � . Then, the solution of (6) is of the form�� � � 	 � ������� ���������� ����� F � � �  ! ���<" � /

��$&% �
	
���� ����� � / ! (11)

Now, let us denote �� ����� � �� ����� �� � ' ����� , which corre-
sponds to the true wavelet in the noise free case. Then,
inserting solution (11) in the constraint equation � ��
	 �� � � �  ! ���#" /

��$&% �
	 �� � 	 ����� � � �Q; , it comes that� � �� ��
	�� � � � �  ! ��� / ���� ����� � � / � ��� � ' ! (12)

Then, from equations (11) and (12), we get the time domain
solution:

� � � 	 �� � �� � F �� ��
	
	��� ��� � �  ! ���<" /
�9$&%

� � � � 	 � ���� ����� � � / � �� � � �  ! ��� / ���� ����� � � / � �

���� !

(13)
Now, let us remark that

� � � 	 � �� � �� �� F �� �� 	�	��� � � � �  ! ��� / " � /
��$&% � 	 ���� ����� � � / � �� � � �  ! ��� / ���� ����� � � / � �


���� !

(14)
Clearly, if �� �� �2; , then � � � 	 � �� changes of sign at ( � ( � if�� has a local optimum at point ( � . This shows that, pro-
vided the true wavelet has an horizontal tangent at point 0,

the derivative of the estimated wavelet � � � � changes of sign
around point (P� ( � (note that the term in the parenthesis is
always positive). In practice, we have shown that this result
remains true for wavelets �� with small tangent slopes at point
0. We explain this good practical behaviour by the fact that,
in practice we are working with a discretized version of the
wavelet.
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