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ABSTRACT
This paper proposes a version of MUSIC algorithm allowing
characterization of polarized sources recorded on a vector-
sensor (or multicomponent sensor) array. This method yields
waves direction of arrival (DOA) and polarization estimates
using multilinear algebra structures. It is based on separation
of the observation space into signal and noise subspaces, us-
ing Higher-Order EigenValue Decomposition for 4th order
tensors. Recorded dataset is stored in tridimensional arrays
rather than matrices to preserve its intrinsically trimodal or-
ganization: time, distance and components. Performances of
the proposed algorithm are evaluated on simulated data.

1. INTRODUCTION

During a seismic acquisition campaign, elastic waves origi-
nating from artificial sources are generated. They propagate
into the earth, are reflected or (and) refracted by the elastic
discontinuities in the ground and are finally recorded on a
sensor array (fig. 1). The study of the recorded data pro-
vides information on the geological features helping to dis-
cover, locate and evaluate gas concentrations or oil reser-
voirs. In order to analyze the seismic documents, sensor
array processing techniques are used to find parameters de-
scribing the waves such as their direction of arrival, polariza-
tion and source magnitude. From the estimated parameters,
it is possible to obtain information on layer structure, depth,
etc [1]. Classically, a scalar-sensor array is used which gives

first layer

second layer

shooting point seismic sensors

elastic waves paths

Figure 1: Seismic acquisition scheme (reflection)

a 2D signal s
�
tn � xn � of size Nx � Nt (tn is the time record-

ing dimension and xn is the distance dimension (array aper-
ture)). Tendency nowadays is to replace the scalar-sensor ar-
rays with vector-sensor ones, allowing better characterization
of the layers because of the polarization dimension added
to the detection process. Multicomponent datasets recorded
this way demand new processing tools adapted to their tri-
modal intrinsic structure. Array processing techniques us-
ing vector-sensors have been developed, mainly in electro-
magnetics [2, 3], the majority directly derived from scalar-

sensor array processing. They use long vectors formed by
the concatenation of the Nc components. The originality of
our method consists in keeping multidimensional structures
for data organization and processing, that are more adapted
to the nature of polarized signals. The proposed method is
a version of MUSIC algorithm adapted to this multilinear
structure. Subspace method for polarized signal separation
was first proposed in [4]. Here, we propose the extension to
the vectorial case of high resolution array processing tech-
nique.

In section 2 the model of a polarized wave on a vector-
sensor array is presented. Section 3 illustrates the ”interspec-
tral tensor” notion and in section 4 the vector - MUSIC esti-
mator is developed. The performances of the proposed algo-
rithm are evaluated in section 5.

2. POLARIZED SOURCE MODEL

Some assumptions are necessary for application of the
vector-MUSIC algorithm.

A1 Consider the case of a linear, uniform scalar-sensor
array recording farfield seismic waves propagated in an
isotropic, homogeneous medium.

A2 The signal is made of K sources (K is known). If
K is not known, it can be estimated from the eigenvalues
variation[5].

A3 Sources
�
s1 � s2 ��� � � � sK � are statistically decorrelated,

spatially coherent and they are all confined in the array plane.
A4 Sources are considered as centered unknown deter-

ministic processes.
A5 The noise is supposed Gaussian, spatially white and

centered.
A6 We suppose that the additive noise on the sensors

is not polarized (the cross-covariance matrix for noise on a
vector-sensor components is diagonal).

A7 Sources polarization is constant in time and along the
antenna (temporal and spatial stationarity).

A8 Sources have different polarizations.
We focus on the case of a two components (Nc � 2)

vector-sensor array (the formalism remains the same in the
case of an arbitrary Nc). The energy repartition of a polar-
ized source sk on the antenna is given by the outer product1

of a vector containing information on the source behavior
along the antenna � k

�
θk ���
	 1 � e � jθk ��������� e � j 
 Nx � 1 � θk � and a

polarization vector � k

�
ρk � ϕk ��� 1�

ρ2
k � 1 � 1 � ρke jϕk � yielding

the energy repartition between the components of the vector-

1The outer product ����� of a tensor ����� I1 � I2 and a tensor ���� J1 � J2 , is defined by:  �!�"�$# i1 i2 j1 j2 % ai1 i2
b j1 j2 & for all values of indices.
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sensor: �
k

�
θk � ρk � ϕk � � � k

�
θk � � � k

�
ρk � ϕk �

In this relation, θk is the inter-sensor phase shift correspond-
ing to source k and ρk, ϕk are the amplitude ratio and the
phase shift respectively, between the second and the first sen-
sor component. We have to estimate θk � ρk and ϕk to charac-
terize a source on a Nc � 2 components vector-sensor array.
Inter-sensor phase-shift θk will be used to characterize the di-
rection of arrival (DOA) of the source on the array rather than
the incidence angle αk (because it is independent of physical
quantities such as inter-sensors distance ∆x and wave propa-
gation velocity vk). The incidence angle αk can then be found

using the following relation: θk � 2πν ∆xsinαk
vk

�
In frequency domain, output of the vector-sensor array is

given by a Nx � Nc matrix in which every column corresponds
to a component of the vector-sensor array:

� �
ν ���

��
� x11

�
ν � x12

�
ν �

...
...

xNx1

�
ν � xNx2

�
ν �

���
	

When assumptions A7 and A8 are considered, at a given
frequency ν0,

� �
ν0 � can be written as a linear combination

of K unknown deterministic signals sk with additive white
noise. For simplification, argument ν0 will be omitted, so
that

� �
ν0 � � � .��

� x11 x12
...

...
xNx1 xNx2

���
	 � 
�� 2

�� s1
...

sK

�	 T 
 ��
� n11 n12

...
...

nNx1 nNx2

���
	
(1)

The operator � 2 represents the 2nd mode product2 of a tensor
by a matrix. 
 is a 3rd order tensor regrouping all the infor-
mation on the sources behavior on the vector-sensor array.
Another way of writing (1) is:

� � K

∑
k � 1

�
ksk


��
(2)

with

�
the additive noise matrix.

3. INTERSPECTRAL TENSOR

In order to characterize the incident field, second order statis-
tics are considered through a ”interspectral tensor”. Inter-
spectral tensor is a 4th-order complex tensor of size Nx � Nc �
Nx � Nc defined as the second order auto-moments and cross-
moments between all the components of all sensors:� � ξ � � � ����� (3)

in which ξ � � � is the mathematical expectation operator. If
we replace (2) in (3) and using A3, A4, A7 and A8,

�
can

be written as:

� � K

∑
k � 1

σ2
k

��� � ��� �

��

(4)

2The 2-mode product of a tensor ����� I1 � I2 � I3 and a matrix � � � J2 � I2 ,
denoted by � � 2 � , is an  I1 � J2 � I3 # tensor given by:  � � n � # i1 j2 i3 %
∑i2

ai1 i2 i3
u j2 i2 �

in which σ 2
k are the different powers of the K sources and

�
� ξ �

�
�
� � �

is a 4th order tensor containing the sec-
ond order noise statistics. As interspectral tensor presents a
higher-order hermitian symmetry (ti1i2i3i4 � t

�
i3i4i1i2

), [6] it can
be decomposed in eigenelements by means of Higher-Order
tensors EigenValue Decomposition (HOEVD) [6]. Interspec-
tral tensor can thus be written as:

� � P

∑
p � 1

λp � �!�"� � � (5)

where P � NxNc, λp are real eigenvalues and ��� #�$ Nx % Nc

are P mutually orthonormal eigentensors. Two tensors are
mutually orthonormal if their scalar product3 equals 0, and
their Frobenius norm4 is unity. To obtain the HOEVD of in-
terspectral tensor, we apply the EVD (EigenValue Decompo-
sition) on standard matrix unfoldings [6]. For a fourth order
tensor

� #&$ Nx % Nc % Nx % Nc , there are four different ways to
unfold it in order to obtain a square matrix. In our particular
case ti1i2i3i4

� t
�
i3i4i1i2

, only two of these unfolding techniques
yield Hermitian symmetric matrices. So, two linear map-
pings between the vectorial space of

�
-like tensors and the

vectorial space of Hermitian matrices ' of size NxNc � NxNc
can be defined:

g1 
 
 i2 � 1 � Nx � i1 ( 
 i4 � 1 � Nx � i3 � � t 
 i1 ( i2 ( i3 ( i4 �
g2 
 
 i1 � 1 � Nc � i2 ( 
 i3 � 1 � Nc � i4 � � t 
 i1 ( i2 ( i3 ( i4 �

for all indices i1 � i2 � i3 � i4. In these expressions g 
 i ( j � are the
entries of ' . The two decompositions g1 and g2 are equiv-
alent, yielding the same eigentensors with HOEVD. This is
a natural result, the HOEVD of a pair-wise symmetric tensor
being unique. The 2nd order eigentensors are obtained by re-
introduction of the tensor notation for the resulting matrices
in the decomposition (inverse operation of matrix unfolding).

4. VECTOR-MUSIC ESTIMATOR

By identification of (4) with (5), we associate the first K
eigenvalues to the signal part of the observation and the other
P ) K eigenvalues to the noise part. We build the noise sub-
space projector using the last P ) K eigentensors:

*,+ � P

∑
p � K � 1

� �!�"� � �
The steering-tensor - � θ � ρ � ϕ � is generated:

- � θ � ρ � ϕ � � � � θ � � � � ρ � ϕ � (6)

Expanding (6), we get:

- � θ � ρ � ϕ � � 1.
Nx
�
1



ρ2 �

/000
1

1 ρe jϕ

e � jθ ρe j 
 ϕ � θ �
...

...
e � j 
 Nx � 1 � θ ρe j 
 ϕ � 
 Nx � 1 � θ �

2 333
4

3The scalar product 5 � & � 6 of two tensors � & � � � I1 � I2 is defined
as: 5 � & � 6 % ∑i1 7 i2 b 8i1 i2

ai1 i2 �
4The Frobenius norm of a tensor � is given by 9 � 9 % : 5 A & A 6 .
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Figure 2: Two component seismic section

Vector-MUSIC estimator VM is then computed by projection
of the steering tensor - on the noise subspace:

VM
�
θ � ρ � ϕ � � 1��� *,+ � - � θ � ρ � ϕ � � i1i2

� (7)

in which
� * + � - � i1i2

is the inner product over the first
two indices and

� � � is the Frobenius norm.
MUSIC estimator values are stored in a multidimensional

table of 3rd order. So, we can detect NxNc sources, Nc times
more than in monocomponent-sensor case. In the general
case of an arbitrary number Nc of components, the number
of parameters to estimate is 2Nc ) 1. In the following sec-
tion, this algorithm will be evaluated on synthetic data in
order to characterize and separate seismic sources in DOA-
polarization domain.

5. SIMULATION RESULTS

To illustrate performances of vector-MUSIC algorithm,
we have considered a scenario with two seismic sources
recorded on a two-component vector-sensor array. The polar-
ization parameters simulated are: ρ1 � 2 � ϕ1 � ) 80 � ( ) 1 � 4
rad) for the first source and ρ2 � 3 � ϕ2 � 60 � (1 � 04 rad) for
the second. The intersensor phase-shift corresponding to the
DOAs of the sources are θ1 � ) 0 � 18 and θ2 � 0 � 58. The
simulations have been performed with an array of Nx � 20
vector-sensors recording Nt � 128 time samples each. The
two components of the original data are presented in fig. 2
(a. and b.). Gaussian noise has been added to a signal to noise
ratio SNR1 � ) 7 dB for the first component and SNR2 � 12
dB for the second one. In order to decorrelate the two sources
in the interspectral tensor, a frequency smoothing technique
[7] has been used with averaging over 5 frequency channels.
This technique induces bias in θ and ϕ estimates because of
the dependency on frequency of these quantities. At the same
time, it reinforces the detection of sources having an inter-
sensor phase-shift close to zero, as it is the case for source 1.
Vector-MUSIC estimator has been calculated as well as the
scalar-MUSIC [8] estimate on each of the components inde-
pendently. For θ we have used a computation step of 0 � 01 in
the interval 	 ) π π � , ρ # 	 0 � 1 : 0 � 1 : 10 � and ϕ # 	 ) π : 0 � 1 : π � .
In fig.3 (a and b) the results of the scalar version of MUSIC
estimator applied to each one of the components separately
are presented. This method is commonly used in seismic
vector-sensor array data processing.

We see that on the first component the two sources are
not clearly visible (fig . 3.a). On the second component
(fig. 3.b), the detection is more accurate but there are still
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Figure 3: Scalar-MUSIC on each component
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Figure 4: Vector-MUSIC

some false alarms that could mask the real detection. Fur-
thermore, the estimates for θ1 and θ2 are slightly different on
the two components, mainly because of frequency smooth-
ing technique. Fig. 4 shows vector-MUSIC estimator for two
sets of polarization parameters. The solid line corresponds to
ρ1 � 2 � ϕ1 � ) 80 � (the polarization parameters of the first
source) and the dashed line corresponds to the second source
polarization parameters (ρ2 � 3 � ϕ2 � 60 � ). We can observe
( fig.4) that both detections are a lot smoother than in scalar
case (the secondary lobs are much more attenuated). It means
that this estimator is more robust to source correlation than
the scalar one, allowing better results for the same averaging
technique. This improvement can be explained by the fact
that vector-MUSIC algorithm takes into account the coher-
ent relationship existing between the components of vector-
sensors.

Polarization parameters ρ and ϕ can also be estimated
with this method. For two values θ1 � ) 0 � 18 and θ2 � 0 � 58
corresponding to sources DOAs, we represent the estimator
values in the polarization (ρ ;ϕ) plane (fig. 5 and fig. 6).
Simulated parameters found are slightly biased due to the fre-
quency averaging. Next, the separation powers of these two
algorithms are compared on a synthetic example. We con-
sider the same seismic sources with the same polarization
parameters as before ρ1 � 2 � ϕ1 � ) 80 � ρ2 � 3 � ϕ2 � 60 �
but with very close DOAs (fig. 7 a. and b.) (θ1 � 0 � 3 rad and
θ2 � 0 � 5). In this case, averaging over five frequency chan-
nels is not an accurate choice because of the important value
of the resulting bias. This is why a mix smoothing technique
over three channels in frequency and three sensors along the
antenna (spatial smoothing) is preferred. The results of MU-
SIC algorithm applied to each component independently is
shown in fig. 8 (a and b). Theoretical position of the detec-
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tion peaks has been marked by a vertical line for each source.
One can see that on the first component, scalar-MUSIC esti-
mator presents only one detection peak corresponding to an
average direction of arrival of the two sources (8.a). On the
second one the algorithm detects only the first source (the one
that is closer to normal incidence). The multicomponent ver-
sion still performs a correct detection (fig. 9) of both sources.
The explanation is on one side the use of coherent informa-

tion between the two components, and on the other side the
isolation of each source on one detection curve correspond-
ing to its polarization parameters. This way, the superposi-
tion of detection lobes is avoided and detection is possible.

6. CONCLUSIONS

Polarization provides an additional dimension to source pa-
rameters space. Taking it into account, we have proposed
a new model and an eigenstructured-based algorithm using
the intrinsic data structure and enabled characterization of Nc
times more sources than in monocomponent array case. Sim-
ulations were carried out to evaluate the performance of the
proposed method. We have shown that polarization diver-
sity enhances the performance of the direction finding sys-
tem provided that a tensor-model is used. Both accuracy and
resolving power are improved. Vector-MUSIC algorithm is
less sensible to the correlation of the sources than its scalar
version, providing at the same time a better separation power.
This algorithm performs an averaging between the Nc com-
ponents, so, it should be used only when the SNR is compa-
rable on all of them. Using a very noisy component could
strongly deteriorate the estimation performance of the algo-
rithm.
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