ON THE ESTIMATION OF RAPIDLY TIME-VARYING CHANNELS

Geert Leus *

Delft University of Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Mekelweg 4, 2628 CD Delft, The Netherlands
phone: +31 15 2784327, fax: +31 15 2786190, email: leus@cas.et.tudelft.nl

ABSTRACT

Relying on the basis expansion model (BEM) for rapidly
time-varying channels, we propose a novel training-based
BEM channel estimation approach. While the existing ap-
proach applies a rectangular window to the received se-
quence and employs a BEM with a period equal to the win-
dow length, the novel approach applies a general window
to the received sequence and employs a BEM with a pe-
riod equal to a multiple of the window length. Simulation
results show that these extensions can significantly improve
the channel estimation performance.

1. INTRODUCTION

In high-mobility wireless applications, rapidly time-varying
channels may be encountered. Such channels have a coher-
ence time that is of the same order as the symbol period, and
thus can not be viewed as being invariant over a frame. Many
equalization methods have already been developed for such
channels. Most of them rely on an approximate yet accu-
rate channel model, e.g., the basis expansion model (BEM)
[7,5, 2, 3]. We can distinguish between direct equalization
methods and equalization methods that require knowledge
of the BEM coefficients. The latter rely on a BEM chan-
nel estimation procedure, which can be blind [8, 5, 2, 4] or
training-based [6].

In this paper, we only focus on training-based BEM chan-
nel estimation. The existing approach [6] applies a rectangu-
lar window to the received sequence and employs a BEM
with a period equal to the window length, which corresponds
to critically sampling the Doppler spectrum of the windowed
channel. Since only a limited Doppler range of the windowed
channel is considered for the channel estimation procedure,
it might be important to reduce the sidelobes and/or to take
more samples within that range. Therefore, we extend the
existing approach by applying a general window to the re-
ceived sequence and employing a BEM with a period equal
to a multiple of the window length, which corresponds to
oversampling the Doppler spectrum of the windowed chan-
nel.

Notation: We use upper (lower) bold face letters to de-
note matrices (column vectors). Superscripts 7, 7, and T
represent transpose, Hermitian, and pseudo-inverse, respec-
tively. Continuous-time (discrete-time) variables are denoted
as x(+) (x[-]). We define the convolution operation as . Fi-
nally, diag{x} denotes the diagonal matrix with x on the di-
agonal.

* This research was supported in part by NWO-STW under the VICI
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2. DATA MODEL

We consider a baseband description of a wireless system with
a single transmit and receive antenna. If we want to transmit
a symbol sequence x[n], it is first filtered by the transmit filter
gu(2), distorted by the physical channel g (#;T), corrupted
by the additive noise v(¢), and finally filtered by the receive
filter grec(#). The received signal y(¢) can then be written as

V)= S gltst—nT)xln] +wlo)

n=—oo

where T is the symbol period, w(t) := grec(¢) * v(¢), and

¢:0)i= [ [ gnels)gul(r— 8- s)galt —5:0)dsde.
(1

Sampling each receive antenna at symbol rate, the received
sequence y[n] := y(nT) can be written as

[oe]
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where w(n] := w(nT) and g[n; v] := g(nT;vT).

Most wireless links experience multipath propagation,
where clusters of reflected or scattered rays arrive at the re-
ceiver. All the rays within the same cluster experience the
same (resolvable) delay, but each of them is characterized by
its own complex gain and frequency offset. Hence, we can
express the physical channel g, (#;T) as [1]

gch(t; T) = Z 6(T - Tc) z Gc,rejZHﬁ”rta (3)

where T, is the (resolvable) delay of the cth cluster, and G,
and f., are respectively the complex gain and frequency off-
set of the rth ray of the cth cluster.

Assuming the time-variation of the physical channel
Zen(2;T) over the span of the receive filter grec(?) is negli-
gible, we can replace gch (f — 53 0) by gen(#;0) in (1), leading
to

glt;T) = /_0:0 (/_igrec(s)gtr(r 9s)ds> gen(t;0)d6

= [ w(r-6)ga(:6)a6
=S0(T-1)% G pe/2Mert
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where (t) := grec(?) * gt (¢). This means that g[n; V] can be
expressed as

glm;v] =g(nT;vT)
= Z W(VT - Tc) z Gc’re-jznfe‘rnT. (4)

For the sake of simplicity, we assume in the following
that we have a single cluster with (resolvable) delay 79 = 0
consisting of rays with complex gain Gy, = G, and fre-
quency offset fp » = f;, and that ((¢) is a Nyquist filter. Then,
(4) simplifies to

glmv]=gln] =y G,
r

and the received sequence can be written as
yIn] = glnlx[n] +win].

3. EXISTING CHANNEL ESTIMATION

In the existing channel estimation approach [6], we apply a
rectangular window d,[n] to y[n], where

dlnl — 1 ifn=0,1,.... N—1
oln = 0 elsewhere ’

and we assume that the periodic extension with period N of
the windowed channel g,,, [#] = d,[n]g[n] can be modeled by
a BEM with period N:

1 2 4
Sw, [n mOdN] ~ h[n] = ¥ z hquZIan/N’
q=-0

where Q should be chosen such that Q/(NT) is larger
than the Doppler spread of the channel Q/(NT) > fimax =
max, | f;|. Defining g, = [gw,[0],....,&w, [N —1]]" and h =
[h_g,...,ho]", the least squares fit for h is obtained by solv-

ing
1
i — —Fh|?
min|g., — - Fhil%,
where

1 1
eijzn-Q/N e]an/N
F =

o~ 2MO(N—1)/N o 2TON—1)/N

The solution of this problem is given by
h=NF'g,, =F"g,,. ()

Note that this solution corresponds to taking the 20 + 1 sam-
ples around zero from the critically sampled Doppler spec-
trum of the windowed channel g, [71].

In practice, only a few pilot symbols x[n,],
p =0,1,....P— 1, are known within the window
n = 01,....N — 1, and thus only a few entries
of g, can be estimated using the windowed out-
put yy.[n] = d.[nlyn)]. More specifically, defining
&, = lgw,.[n0),-..,&w [np-1]]7, an estimate of g, can

be obtained as &, = [y, [10]/x[10],- - - sy, [np—1] /X[np_1]]" .
The BEM coefficients h are then computed by solving

2 1~
in||g,, — —Fh|?
min|g,, — - Fhll%,

where
o~ J2M0no /N oJ2M0n0 /N
F= : : J
e—J2m0np_1 /N e/2m0np_1 [N
resulting in the following estimate:
h=NF'g, . (6)

It has been shown in [6] that for this channel estimate an
equispaced positioning for the pilot symbols is optimal.

4. PROPOSED CHANNEL ESTIMATION

Since only a limited Doppler range of the windowed channel
is considered for the channel estimation procedure, it might
be beneficial to reduce the sidelobes and/or to take more sam-
ples within that range. That is why we will apply a general
window to the received sequence and employ a BEM with a
period equal to a multiple of the window length, which cor-
responds to oversampling the Doppler spectrum of the win-
dowed channel. This is discussed in more detail next.
We apply a general window d[n] to y[n|, where

s[n] ifn=0,1,...,.L—1
d—d 1 ifn=L,L+1,....N—L—1
[n] = sIN—1—n] ifn=N—LN—-L+1,....N—1 °

0 elsewhere

and we assume that the periodic extension with period KN of
the windowed channel g,,[n] = d[n|g[n] can be modeled by a
BEM with period KN:

12 (K) 2 KN
gw[nmod KN] ~ h®)[n] = — A gr2man/ (KN)
KN :ZQ

where O should be chosen such that Q/(KNT) is larger
than the Doppler spread of the channel Q/(KNT) > fmax =

max, | f.|. Defining g&{() = [gw[0],...,gw[KN — 1]]7 and

h&) = [h(fQ), . ,h(QK)]T, the least squares fit for h) is ob-
tained by solving

. 1
minjgy” — PR, )
where
1 . 1
» o~ J2T0/(KN) /2T0/(KN)
F =

¢~ 72MOUKN~1)/ (KN) oFMO(KN~1)/ (KN)
The solution of this problem is given by

A = kNPT — pEH K, ®)

2228



—— optimal

0.09f - - pilot

o existing (L=0, K=1)
0.08F + proposed (L=10, K=1) ||
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normalized MSE

Figure 1: Effect of increasing the smoothness of the window
when critical sampling is employed.

Note that this solution corresponds to taking the 20 + 1 sam-
ples around zero from the K times oversampled Doppler
spectrum of the windowed channel g,,[n].

At this point, it is convenient to rewrite (7) in a dif-
ferent fashion. Defining g, = [gy[0],...,gw[N — 1]]” and

(K) _ p(K) (K) (K) (K) :
b = [hy ke (7ak+l)K+k""7h(bk71)1<+k’hbkl<+k}’ with

ar = (Q+k) mod K and b; = (Q — k) mod K, for k =

0,1,...,K — 1, it is easy to show that the solution for h,(fq

of (7) is obtained by solving

: (K) 1 (K)y, (K) (12
min||D ——F,;"’h
,(CK)H r 8w Nk M || >

where D;CK) = diag{[1,e 2TW/(KN) | o= /2T(N=1)/(KN)|T}
and

F(K) B e*jZTl'ak/N ej2rrbk/N
P =

o~ /2T (N=1)/N /2T (N=1)/N

The solution of this problem is given by

b — NP TD K, — DK ©)

Note that this solution corresponds to taking the a; + by + 1
samples around zero from the critically sampled Doppler
spectrum of the k/(KN) frequency shifted version of the win-
dowed channel g,,[n]. It is clear that all these samples to-
gether (for k=0,1,...,K — 1) indeed consist of the 20 + 1
samples around zero from the K times oversampled Doppler
spectrum of the windowed channel g,,[n], which have been
derived in (8).

As before, in practice, only a few pilot symbols
x[np), p = 0,1,...,P — 1, are known within the win-
dow n = 0,1,...,N — 1, and thus only a few en-
tries of g, can be estimated using the windowed out-
put yy[n] = dn]y[n]. More specifically, defining g, =
[gw[no],.-.,gwnp_1]]", an estimate of &,, can be obtained as

A

& = [wlnol/x[no], - .., ywnp_1]/x[np_1]]". The BEM coef-

— optimal

0.09¢" - - pilot. H
\ o existing (L=0, K=1)

+ proposed (L=l
x__proposed (L=

normalized MSE

Figure 2: Effect of increasing the oversampling factor when
a rectangular window is employed.

ficients h,(fK)

are then computed by solving
min D8, — 1/ NE P,
k

where f),gq = diag{[e/2™n0/(KN) __  g=j2mhnp/(KN)| T,
and

e*jzﬂakno/N ej2nbkn0/N

PO _

)

e—J2magnp_ /N e/2Mbgnp_1 /N

resulting in the following estimate:

ho — NERTDHE (10)

5. DISCUSSION

First of all, it is clear that the proposed approach generalizes
the existing one. More specifically, if we take L = 0 (the
general window becomes a rectangular window) and K =1
(oversampling becomes critical sampling), the proposed ap-
proach is equivalent to the existing one.

In the proposed approach, the windowed channel g,,[#]
only corresponds to the true channel g[n| in the range n =
L L+1,....N—L—1. As aresult, we will only use the es-
timated BEM coefficients in that range. In other words, the
performance criterion that we are interested in is

1 N_L_1’ [1] 1 § (K) ,j21ign/(KN) 2
g[n] — hyg n
N_2L nZL KN 2,

If this is the criterion of interest, one could wonder why we
solve (7) instead of minimizing the above criterion. The rea-
son for this is that the resulting BEM coefficients are rather
unpredictable and turn out to have a huge dynamic range.
The BEM coefficients obtained in the previous section, on
the other hand, are related to the Doppler spectrum of the
windowed channel g,,[n], and as a result, have a limited dy-
namic range.

For the proposed approach, many windows are possible.
However, as long as s[n| realizes a smooth transition from 0

(11)
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Figure 3: Effect of increasing the smoothness of the window
when oversampling is employed.

to 1 forn=0,1,...,L — 1, there will not be a large differ-
ence in channel estimation performance. Therefore, we sim-
ply consider a cosine window: s[n] = 1/2(1 — cos(71(1/2+

n)/L).

6. SIMULATION RESULTS

In this section, we compare the proposed approach to the ex-
isting approach. We consider a channel consisting of 100
rays with complex gain G, = 1/4/100 and frequency off-
set f, = fmaxcos(6,), where 6, is uniformly distributed in
[0,271). We further assume N = 1000 and fi,x7 = 1/1000.
In all simulations, we compare the existing approach with
the proposed approach and consider the optimal solutions
of (5) and (9) (indicated by ‘optimal’) as well as the pilot-
based solutions of (6) and (10) (indicated by ‘pilot’). The
pilot-based solutions will rely on 100 pilot symbols that are
distributed over the N = 1000 transmitted symbols in an eq-
uispaced fashion. In other words, we transmit a pilot symbol
every other 9 data symbols. As a performance measure, we
consider the normalized MSE of (11) versus Q/K at an SNR
of 5 dB, where Q/K is an indication of the Doppler range
considered in the channel estimation procedure.

First, we compare the existing approach (L =0, K = 1)
with the proposed approach taking L = 10,100 and K = 1,
i.e., we only change the smoothness of the window. From
Figure 1, we observe that increasing the smoothness of the
window significantly improves the performance for all values
of /K.

Second, we compare the existing approach (L =0, K =1)
with the proposed approach taking L =0 and K = 2.4, i.c.,
we only change the oversampling factor. From Figure 2,
we observe that increasing the oversampling factor only im-
proves the performance above an increasing value of Q/K
and deteriorates the performance below this value. In addi-
tion, we see that the improvement saturates. Hence, it is not
always beneficial to use a large oversampling factor. Note
that when we would minimize criterion (11) directly, over-
sampling always leads to an improved performance, but as
already indicated, we then obtain BEM coefficients that are
rather unpredictable and turn out to have a huge dynamic
range.

Finally, as can be observed in Figures 3 and 4, the effect

—— optimal
0.09 ,\\ -~ pilot u
\ o proposed (L=10, K=1)
0.08F \\ + proposed (L=10, K=2) ||
: \ x__proposed (L=10, K=4

normalized MSE

Figure 4: Effect of increasing the oversampling factor when
a general window is employed.

of changing the smoothness of the window when oversam-
pling is used is the same as when critical sampling is used,
and the effect of changing the oversampling factor when a
general window is used is the same as when a rectangular
window is used.
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