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ABSTRACT

Despite its simplicity, the pseudolinear estimator for
bearings-only target localization is known to suffer from se-
vere estimation bias. To overcome this problem, the method
of total least squares (TLS) can be employed which attempts
to correct errors not only in the data vector but also in the
measurement matrix. The paper examines the relationship
between the target localization geometry and the TLS esti-
mation bias for the target location. The paper shows that
translations of the target localization geometry through sim-
ple shift and/or rotation operations do affect the bias of the
TLS estimator and can be exploited to reduce the TLS esti-
mation bias significantly.

1. INTRODUCTION

Passive target localization has a long history. The pioneer-
ing work in this area is that of Stansfield [1]. The Stansfield
estimator is a weighted least squares (WLS) estimator that
can be viewed as a small bearing noise approximation of the
maximum likelihood (ML) estimator for independent Gaus-
sian bearing noise and no observer position error [2]. It also
assumes the prior knowledge of the target range from the ob-
server positions. This strong assumption can be dispensed
with by using the pseudolinear estimator [3]. The passive
target localization problem can be recast as a nonlinear LS
problem by using the ML solution.

Despite having low complexity and no convergence prob-
lems, a major drawback of the pseudolinear estimator is the
large estimation bias that does not vanish with the increasing
number of measurements. The bias is due to the correla-
tion between the measurement matrix and the bearing noise,
and its severity depends on the target localization geome-
try as well as the noise statistics. The bias of the pseudo-
linear and Stansfield estimators has been studied in the tar-
get tracking and localization literature (see e.g. [4, 3, 2, 5]).
To overcome the bias of the pseudolinear estimator, various
fixes have been proposed based on batch iterative and closed-
form instrumental variables [3, 6, 7], and total least squares
(TLS) [8, 9]. The iterative techniques have the disadvantage
of being sensitive to initialization and the stepsize [10].

In this paper we examine the effect of target localization
geometry on the bias of the TLS target location estimator.
The TLS estimator attempts to correct the errors in both the
measurement matrix and the data vector unlike the pseudo-
linear estimator. The bias performance of the TLS algorithm
will be shown to depend on the absolute localization geome-
try. The analysis will obtain best target localization geome-
tries that can be obtained from a given arbitrary geometry by
simple shift and/or rotation operations.
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Figure 1: Two-dimensional bearings-only target localization
geometry.

The paper is organized as follows. Section 2 introduces
the target localization problem. In Section 3 an overview of
the pseudolinear estimator is provided. Section 4 develops
the TLS estimator. The dependence of the TLS estimation
bias on target localization geometry and its equivalent trans-
lations is explained in Section 5. Section 6 presents simula-
tion studies. The conclusions are drawn in Section 7.

2. PASSIVE BEARINGS-ONLY TARGET
LOCALIZATION AND ASSUMPTIONS

The two-dimensional passive target localization problem us-
ing bearing measurements is depicted in Fig. 1 where p is the
location of a stationary target, and 6; and r; are the bearing
angle and observer position, respectively, at time instant k.
The relationship between the bearing angle, observer posi-
tion and target location is given by the nonlinear equation:

_1 By
O =tan ' =, k=1,....N 1
k a'n AXk7 b b ()
where Ayy = p, — 7y 5, DX, = px —Fej, p= [px,py]r andr, =

[rx,kv ry,k] T

The objective of target localization is to estimate the tar-
get location p from a sequence of bearing measurements over
the interval 1 <k < N. In practice, the bearing measurements

are corrupted by additive noise, i.e.,
B = 6+ ni (2)

where the 8, k=1,...,N, are the bearing measurements and
ny, is the bearing noise. We assume that ny, is white Gaussian
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with zero mean and variance 03/; The bearing noise variance
can vary with k. We also assume that the target is observable
from the available observer positions and bearing measure-
ments. Regarding the observer trajectory, we assume that the
observer moves along a linear path and collects bearing mea-
surements at equally spaced positions.

3. OVERVIEW OF THE PSEUDOLINEAR
ESTIMATORS

The pseudolinear estimator can be derived from the orthogo-
nal vector sum relationship

p=rr+S+ex 3)

where 5y is the noisy bearing vector and e; 5; = 0. The or-
thogonal error vector ey, is defined by

sin ék~ :| . (4)

er =disinnga ay =
k k kak, Qg {—cos@k

Here dy. = ||s¢ |2 is the target range from the observer position
ri and ay is a unit vector orthogonal to §;. To eliminate 5y,
pre-multiply both sides of (3) with a,{, resulting in

app=apry+ni Q)

where N, = disinn; is a nonlinearly transformed version
of the bearing noise that has zero mean and variance
d?E{sin’ n;}. For small bearing noise, i.e., sinny = 1y, the
variance of n; can be approximated by d,% Gfk. Concatenating
(§)fork=1,...,N, we get

Ap=b+n (6)
where
aj ary N
azT a2Tr2 n»
A= |, b=| . |, n=|.]. (7
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An LS solution to (6) is given by

Prs = argmin||4p — b]|3 (8)
PpER?
=(A"4)7'4aTb (8b)

which is referred to as the pseudolinear estimator. Equa-
tion (8b) assumes that A7 4 is nonsingular in accordance with
the observability assumption.

4. THE TLS ESTIMATOR

The LS problem assumes that all errors occur in the vector
b. However, this is not the case with the bearings-only target
location problem since in (6) both the “measurement” ma-
trix A and the “data” vector b are subject to error due to the
bearing measurement noise. The LS estimators such as the
pseudolinear estimator and the Stansfield estimator exhibit
large bias due to the correlation between the entries of 4 and
N, which can be asymptotically expressed as [5]

E{prs}—p=—E{4"A}E{4d"n}. ©)

The estimation bias can be reduced significantly by em-
ploying the TLS estimation algorithm. Central to TLS is
the concept of perturbing both 4 and b in a minimal fash-
ion, rather than b only as in the case of LS estimation, to
achieve a consistent equation that relates the perturbed 4 to
the perturbed . TLS aims to solve the following constrained
minimization problem [11, 12]

min (LA, 3]Tr (10)
b+dcRange(4+A)

where L and T are nonsingular diagonal weighting matrices
L= diag(117127 e ,lN)
T = diag(11,12,13)
and || - || denotes the Frobenius norm. The TLS solution is
given by the vector pr g that satisfies

where A and 0 are the perturbations that minimize (10).

The TLS estimate can be easily obtained by using the
singular value decomposition (SVD) of the weighted aug-
mented matrix

3
LiADIT =UZVT =5 o] (12)
i=1

where g; > 0, > 03 > 0 are the singular values, and U =
[u1,up,u3] and V' = [v1,v,,v3] are orthogonal matrices, i.e.,
UTU =T and VTV = I. The perturbations minimizing (10)
are obtained from a reduced rank approximation of L[4, ]T":

R 2
LIAbIT+LA, 8T = 5 cuv] (13)
=1

where ||L[A, 3]T||F = 03. Using (13), (11) can be rewritten
as

[A+A b+ 8] [p“ﬂ =0 (14a)
[ < T 1|D
L~ oun! | T~ [ TLS} —0. (14b)
2, 1
Noting that v/ v; = 0 if i # j, we obtain
D 1
{PTLIS} =———Tv; (15a)
- 13v33
A 1 Jhvis
= 1
D1Ls P {12\’23 (15b)

where V3 = [V13,VQ3,V33]T.
For the bearings-only target localization problem, the
TLS weighting matrices are usually set to L=7and T =1

because of the intractability of optimal weights.

5. GEOMETRY TRANSLATION FOR BIAS
REDUCTION

The TLS performance does not remain the same for different
equivalent translations of a given target localization geome-
try. Since we have the freedom to translate a given geometry
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Figure 2: Normalized geometry obtained from an arbitrary
localization geometry by shifting and rotation where the cen-
tre of mass of the 7, is at the origin.

by means of rotation and shifts, it is advantageous to seek a
translation that will minimize the TLS bias and mean-square
error (MSE).

Th TLS bias can be minimized by reducing the bearing
noise variance, or by shifting and/or rotating the target loca-
tion geometry as we shall see. In a given target localization
problem, we cannot change the bearing noise variance. How-
ever, shifting and/or rotation of the geometry can be done
without changing the location problem. A given target lo-
cation geometry can be shifted to change the 7, and can be
rotated to change both the 7 and the 6;. If the shifting and
rotation is done in such a way as to minimize the norm of the
TLS bias, this will lead to the best TLS target localization ge-
ometry. It is interesting to note that the bias of the pseudolin-
ear estimator is invariant to the translation of the localization
geometry through shifts and rotations. This is readily seen
from the bias expression for the pseudolinear estimator [5]

E{ATA/N}'E{sin*n;}(c— p) (16)

where the bearing noise is assumed to be i.i.d., and ¢ is the
centre of mass of observer positions ;. Thus, for the pseudo-
linear estimator it is not possible to reduce the bias by means
of geometry translation.

To shift the target location geometry by a displacement
vector s, we perform rp+s, k=1,...,N, and p + s, which
amounts to shifting the observer positions and the target lo-
cation by s, respectively. The bearing angles are not affected
by a shift. To rotate the target geometry by @, we use the
rotation matrix

_ |cos@
R= [sinqo

—sin q)}

cos @

The rotated bearing angles, bearing measurements, observer
positions and target location are simply given by

6.+, k=1,....N

9k+(p7 k=1,...,N

Rry, k=1,...,N
Rp.

By an appropriate selection of s and ¢, any target lo-
calization geometry with a linear observer trajectory can be

translated to the normalized geometry shown in Fig. 2 in
which the observer trajectory is placed on the x-axis (i.e.,
1y, =0,k=1,...,N) and the center of mass of the observer
positions is at the origin, i.e., ¥ 7 = 0. For bias com-
parison purposes we will use the normalized geometry for
a given arbitrary target localization geometry and determine
the necessary shift that needs to be applied to the normalized
geometry to yield the minimum TLS bias.

In target localization applications, only observer posi-
tions 7 and bearing measurements 0, are available. The
translation of the geometry is carried out by shifting and/or
rotating the r; and 0. In this case, the true target location is
also implicitly translated. In fact, the translation process is
equivalent to rotating and/or shifting Cartesian coordinates.
After the target location estimate is obtained from the trans-
lated 7 and 6, the target location estimate in the original
geometry (before translation) can be recovered by simply un-
doing the translation on the location estimate.

6. SIMULATION STUDIES

As alluded to in Section 5, the TLS bias is dependent on the
absolute location of the observer positions. The key ques-
tion is “how does the absolute location affect the TLS bias?”
There does not appear to be a simple answer to this question.
The purpose of this section is to illustrate by simulation the
dependence of the TLS estimation bias on the shift applied
to the normalized geometry of a target localization scenario.

The simulated target localization geometry is shown in
Fig. 3 where the true target location is p = [47.97,98.60]”
and N = 40 bearing measurements are taken at reg-
ular intervals along a linear trajectory between r; =
[11.2061,26.8404]7 and ry = [48.7939,13.1596]7. The
bearing noise standard deviation is 5°. Fig. 3 also shows the
mean pseudolinear and TLS location estimates and their 1-0
error ellipses obtained from 10,000 Monte Carlo simulation
runs. Both the pseudolinear and TLS estimates exhibit large
estimation biases even though the TLS bias is smaller.

To demonstrate the effect of translation, the geometry of
Fig. 3 was first translated to the normalized geometry as in
Fig. 2 by applying an appropriate shift and rotation. Using
the normalized geometry, the effect of the shift s = [sy,s,]”
was simulated by estimating the TLS bias for each shift in
the range —30 <, <40 and —20 <, < 10. For simula-
tion purposes, only integer-valued shifts were used, and the
TLS bias was estimated using 10,000 Monte Carlo simula-
tion runs. A smoothed version of the resulting TLS bias norm
estimates is plotted in Fig. 4. The figure demonstrates the
dependence of the TLS estimation bias on the shift vector s.
The bias appears to be reduced on an elliptical trajectory on
the s,-s, plane. However the minimum bias was obtained at
shift smin = [0,4]7. The geometry resulting from this shift is
shown in Fig. 5 along with the pseudolinear and TLS esti-
mation results. A comparison of Fig. 5 with Fig. 3 confirms
that the TLS estimation bias is indeed significantly reduced
if the normalized geometry is shifted by spis. Table 1 sum-
marizes the simulated performance of the pseudolinear and
TLS estimators.

7. CONCLUSION

For a given target localization geometry, we have shown
that there exists an equivalent translated geometry obtained
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Estimator Geometry Bias Norm  MSE

Pseudolinear Fig. 3 21.01 463.35
TLS Fig. 3 6.55 90.51
Pseudolinear Fig. 5 20.94 461.06
TLS Fig. 5 0.07 63.95

Table 1: Bias and MSE performance.

through shift and rotation operations that minimizes the TLS
estimation bias. The resulting bias reduction was demon-
strated to be quite significant. The existence of favourable
geometries for the TLS estimator can be exploited to de-
termine an optimal geometry translation using offline sim-
ulations based on an initial target location estimate obtained
from the initial localization geometry.
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