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ABSTRACT

The focus of this paper is the optimal detection of piecewise
constant binary valued continuous-time (C-T) signals with
Markovian state transitions. One example is the classic ran-
dom telegraph signal for which the number of states is two
and the transitions follow a Poisson process. This signal de-
tection problem arises in many different areas of engineer-
ing and science, notably modulation classification in digital
communications and detection of digital content in continu-
ous signals or images with high noise contamination. Our
motivation is single electron-spin detection in Magnetic Res-
onance Force Microscopy (MRFM), which is an emerging
molecular scale imaging modality. We will obtain an optimal
discrete time iterative detection algorithm and an associated
upper bound on the Receiver Operating Characteristic (ROC)
curve. These results will be used to show that the optimal
detector reduces to a simple filtered energy detector when
the state transition probabilities are symmetric, the signal-
to-noise ratio (SNR) is low, and the time-bandwidth product
is high. In the general case when the state transition proba-
bilities can be either symmetric or asymmetric, the optimal
detector reduces to a hybrid filtered energy/amplitude/energy
detector when the SNR is low and there are a large number
of samples per observation.

1. INTRODUCTION

The detection of piecewise constant binary valued C-T sig-
nals with Markovian state transitions occurs often in differ-
ent areas of science and engineering. One of the most com-
mon examples of such Markovian C-T signals is the random
telegraph signal whose transitions are governed by a Pois-
son process. In this paper, we propose optimal detectors for
signals that can be approximated by two-state signals with
Markov transitions. The prime motivation for our work is
the detection of a single electron spin in a very sensitive
physics (MRFM) experiment called interrupted Oscillating
Cantilever-driven Adiabatic Reversal (i0SCAR) described
below. Accordingly, while our optimal filter structures and
bounds are more generally applicable, we present all of our
results in this specific application domain.

A general MRFM experiment involves the detection of
perturbations of a thin micrometer-scale cantilever whose tip
incorporates a submicron ferromagnet. When no electron
spins are present, the cantilever acts as a harmonic oscillator.
Unpaired electron spins in the sample behave like magnetic
dipoles, exerting perturbing forces on the cantilever. Thus,
the presence of electron spins can be detected based on mea-
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suring the perturbation of the cantilever position from its nor-
mal oscillatory behaviour. The iOSCAR method considered
here uses an externally modulated radio frequency (RF) field
to manipulate the electron spins in such a way as to produce
periodic forces on the oscillating cantilever [1, 2]. This re-
sults in small changes in the cantilever’s natural frequency
y. A laser interferometer measures the cantilever displace-
ment; detection of these frequency shifts in the cantilever dis-
placement signal identifies the presence of electron spins.

One model for the cantilever-electron spin interaction is
suggested by the Stern-Gerlach experiment [3]. The resultant
signal model takes the form of the classic C-T random tele-
graph process. A finite-dimensional optimal detector does
not exist; however, a hybrid Bayes/Generalized Likelihood
Ratio (GLR) detector was developed [4, 5]. Unfortunately,
it has a running time that makes a real-time implementation
unfeasible at this point. Consequently, we have formulated
a (generalized) discrete-time (D-T) analog of the C-T ran-
dom telegraph process. The optimal Likelihood Ratio Test
(LRT) for the D-T random telegraph can be derived, with a
complexity of &(N). Here, N is the number of samples per
observation. Surprisingly, it can be shown that there exist
simpler detectors, all with &€(N) complexity, that approxi-
mate the LRT.

This paper describes two results. Firstly, the filtered en-
ergy detector is approximately asymptotically optimal for
the D-T random telegraph model under the conditions of
low SNR, high time-bandwidth product, and symmetric tran-
sition probabilities. Secondly, in the general D-T ran-
dom telegraph model (which includes both symmetric and
asymmetric transition probabilities), a hybrid filtered en-
ergy/amplitude/energy detector is approximately asymptot-
ically optimal under the conditions of low SNR and long ob-
servation time. The MRFM single electron spin detection re-
sults described in this paper are more fully developed in [6],
as are additional finite (non-binary) state Markov models and
detectors.

The outline of this paper is as follows. In Section 2, we
briefly review the iOSCAR experiment. Then, in Section 3,
we describe the C-T and D-T random telegraph process. Sec-
tion 4 develops the optimal LRT detector for the D-T random
telegraph model and its approximately optimal forms. Simu-
lation results are presented in Section 5.

2. DESCRIPTION OF THE IOSCAR EXPERIMENT

In the experiment, a submicron ferromagnet is placed on
the tip of a cantilever that sits approximately 50 nanome-
ters above a sample. In the presence of an applied RF field,
the electron in the sample undergoes magnetic resonance if
the RF field frequency matches the Larmor frequency. Only
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those spins that are within a thin resonant slice will satisfy
the condition for magnetic resonance and interact with the
cantilever. If the cantilever is forced into mechanical oscilla-
tion by positive feedback, the tip motion will cause the po-
sition of the resonant slice to oscillate. As the slice passes
back and forth through an electron spin in the sample, the
spin direction will be cyclically inverted due to an effect
called adiabatic rapid passage [7]. The cyclic inversion is
synchronous with the cantilever motion and affects the can-
tilever dynamics by changing the effective stiffness of the
cantilever. Therefore, the spin-cantilever interaction can be
detected by measuring small shifts in the period of the can-
tilever oscillation using a laser interferometer. This method-
ology has been used successfully to detect small ensembles
of electron spins [1, 2].

Denote by Bj(¢) the amplitude of the RF magnetic field,
By(t) the amplitude of the tip magnetic field at the spin lo-
cation, wrr the RF field frequency, and ABy(t) = By(t) —
o/ Y the off-resonance field amplitude. The constant y =
5.6mx 10'0s7IT~! is the gyromagnetic ratio. If ABy(t)
varies sufficiently slowly such that the adiabatic criterion
d[ABy(#)]/dt < yB3(t) is satisfied, the spin can be assumed

to remain aligned with either Be(z) or —Beg(¢), where Beg
is the effective magnetic field. These are the spin-lock and
anti-spin-lock conditions, respectively.

3. MRFM SIGNAL MODELS
3.1 C-T random telegraph

Assume that the cyclic adiabatic criterion holds. In the
iOSCAR protocol, B (t) is turned off after every Ny, cycles
over a half-cycle duration: this induces periodic transitions
between the spin-lock and anti-spin-lock states. Let Z(¢) be
the result of frequency demodulating z(¢) to baseband. Using
the perturbation analysis in [8], it can be shown that Z(¢) is a
square wave whose transitions coincide with those of B (¢)
and is approximately periodic. Thus, spin detection can be
accomplished by correlating Z(¢) with a square wave refer-
ence derived from By (¢).

Unfortunately, the effects of random thermal noise and
spin relaxation decorrelate Z(¢) and the square wave signal
reference. One model for this decoherence phenomenon is
suggested by the Stern-Gerlach experiment [3]: the spins
maintain either the spin-lock or anti-spin-lock states, but ran-
domly change polarity during the course of the measurement.
This leads to random transitions in Z(¢), and we assume that
their times are distributed according to a Poisson process
with a rate of A. Note that correlating Z(z) with the reference
square wave, as was described in the previous paragraph, has
the effect of cancelling out the deterministic transitions in
Z(¢). What remains after the correlation are the random tran-
sitions, and as the transition times are generated by a Poisson
process, the resultant signal takes the form of a so-called ran-
dom telegraph process [9].

Define y(¢) to be the result of correlating Z(z) with the
reference square wave. Let [0,7] be the total measurement
time period over which the correlator integrates the measure-
ments, and let T = {1;},i = 1,...,.¢, be the time instants
within this period at which random spin reversals occur. As
T are the arrival times of a Poisson process with intensity A,
K is a Poisson random variable with rate A7. Thus, the
random telegraph model is: y(¢) = s(¢) + w(z) where w(¢) is

Additive White Gaussian Noise (AWGN) with variance 02,
and s(¢) is a random telegraph signal containing only the ran-
dom transitions. The detection problem for this model is to
design a test between the two hypotheses:

w(t)
s(1) +w(t) M

Hy (spin absent) : (1)
H; (spin present) :  y(t)

fort € [0,T].

3.2 Generalized D-T Random Telegraph

Here, we treat ¥ = [y, ..., nv—1] as samples of the baseband
output of the frequency demodulator and correlator. The D-T
random telegraph signal is a D-T Markov chain, and will be
denoted by ¢;, where (; € {+4,—A4},0<i < N-—1, and {p
is equally likely to be either +£4, where 4 can be computed
from experimental parameters. The transition probabilities
of {;,i > 1 are as follows:

P (i=(1=4
P(&ilGi-1) = (1]—p 2 - 2_41, Z:i_l—IZA @
l—gq (=4,{-1=-4

We restrict 0 < p,g < 1. If p = ¢, we say that the tran-
sition probabilities are symmetric, and when p # ¢, we shall
say that they are asymmetric. For the symmetric case, we
can match the C-T model to the D-T model by equating
the expected number of transitions of the Poisson process
to that of the Markov chain. This results in p = 1 — T3A,
where T is the sampling time interval and A is the expected
number of transitions per second. Define the signal vector

{ =1[4o,---,{n—1]" and the noise vector W = [wy, ..., wy_1]".
We shall model the w;’s as independent and identically dis-
tributed (i.i.d.) Gaussian random variables (r.v.s) with mean
0 and variance 0. The detection problem is then to decide
between:

Hj (spin absent) :

H; (spin present) : +Ww 3)

4. SIGNAL DETECTION STRATEGIES

We shall consider detectors for the D-T random telegraph.
The detectors in this section operate on samples of y(¢), de-
noted by {y;}. Define the SNR to be SNR = 42/0? and its
dB value to be SNRgg = 10 log;, SNR.

One can derive the LRT for the D-T random telegraph.
The LRT is a most powerful (MP) test that satisfies the
Neyman-Pearson criterion: it maximizes the probability of
detection (Pp) subject to a constraint on the probability of
false alarm (Pr) [10], which is set by the user. This gives
us a benchmark with which to compare other detectors tests.
When the random transition times are known, the optimal
LRT is the matched filter, called the omniscient matched fil-
ter (MF) in this paper. Although unimplementable in real-
ity, the MF detector provides an absolute upper bound when
comparing the various detectors’ ROC curves.

Define Rk(S) = P(Zk = S|Yk_1,. . .,Yo), where S € {:*:A}
and k > 1. Let 5, 5, = P(S; = S2) be the probability that
the signal {; goes from Sy in the current time step to S5 in the
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next with S}, S, € {£A4}. There exists a recursive formula for
Ri(S).

4y
eo? kile_l(A)
s —4
e IR (4) + e P Ry (—4)

~~

*
+ Vea,s(1 =) 4)
for k > 1 and with initial conditions Ry(4) = Ro(—4) = 1/2.

Note that % = exp(4yi_1/02)Ri_1(4)/(...). With this, one
can derive the log LRT:

Ri(S) = Vus

N-—1 ) ) H
nAF) = Y In|Re(A)eo™ +Ri(=A)e | 2 n
k=0 Hy

&)

The running time of the log LRT statistic is &'(N), where N
is the number of observations.

Under the regime of low SNR and long observation times
(N> 1), the second-order expansion of (5) is approximately
equal to the hybrid filtered energy/amplitude/energy detec-
tor:

1-a?
2a

2+1—(12
a
;" 20

where Ci = (p— q)0/[4gA(1 - 1), Cu = r(1 — g)/[2q(1 -
r)], and r = p+q— 1. Here, a = y * hrp[k], and hpp[k]
is the impulse response of the first-order, single-pole filter
given by Hip(z) = (1—a)/2-(14+z71)/(1 —az™"), where
we require |0| < 1 for stability [11]. What this means is that
in the aforementioned regime, we expect the hybrid detector
to have performance similar to the optimal LRT test. When
p = ¢, the second-order expansion of the LRT is approxi-
mately equal to the filtered energy detector for values of p
close to 1. The filtered energy detector can be expressed as:

)yt Cn Zyi (6)
T T

N—1 ) H1
Sa zn ™
i=0 H,

The complexity of the filtered energy and hybrid statistics is
O(N).

5. SIMULATION RESULTS

The objective in this section is to compare the optimal LRT
of the D-T random telegraph model (denoted by RT-LRT)
with the filtered energy and hybrid detectors. Comparison of
the various detectors is done using ROC curves, which is a
plot of probability of detection (Pp) vs. probability of false
alarm (Pr), and power curves, which is a plot of Pp vs. SNR
at a fixed Pr. Some of the parameters used in the simula-
tions are as follows: the natural frequency of the cantilever
wy = 271- 10* rad s™!; the sampling period 7y = 1 ms; and
signal durations of 7 = 60 s and T = 150 s were used. The
performance of the detectors varies as a function of 7'; in
general, a larger T results in better performance. Realistic
values of T are several orders of magnitude larger. Never-
theless, the comparative results obtained from using the two
values of T above are representative of larger values. In-
deed, our approximations to the optimal detectors improve
with larger 7.

Figure 1 depicts the simulated ROC curves at SNR =
-35dB, A =0.5s~!, and with symmetric transition probabil-
ities (p = q). With Ty = 1 ms, this results in p = g = 0.9995.
The RT-LRT, filtered energy, and hybrid detector curves are
virtually identical, which confirms our previous analysis.
The omniscient MF detector has the best performance, which
is consistent with our expectations. We generated a power
curve over a range of SNR under the same conditions as in
Figure 2 with a fixed Pr = 0.1 The RT-LRT, filtered energy,
and hybrid detector have similar performance from -30 dB
to -45 dB. With this particular value of Pr and A, the RT-
LRT, filtered energy, and hybrid detector perform from 5 dB
to 10 dB worse than the MF detector.
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Figure 1: Simulated ROC curves for the D-T random tele-
graph model with symmetric transition probabilities at SNR
=-35dB, T =60 s, and A = 0.5 s~! for the omniscient
matched filter, D-T random telegraph LRT, filtered energy,
and hybrid detectors. The RT-LRT is the optimal detector for
this model.
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Figure 2: Simulated power curves (Pp vs. SNR) for the D-T
random telegraph model with Pr fixedat0.1 and A =0.5s71,
T =60 s. The RT-LRT is the optimal detector for this model.

In the interest of space, ROC curves for a different value
of A will not be shown. However, performance degrades as
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A increases. In any case, the curves for the RT-LRT and
filtered energy detector are similar. Before moving on, we
would like to present an asymmetric case where p # g: set
p =0.9998,9 = 0.9992. The ROC curves are presented in
Figure 3. There is a noticeable difference between the curves
of the RT-LRT and filtered energy detectors. The hybrid de-
tector’s curve is slightly below that of the LRT, and it is better
than that of the filtered energy detector.
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Figure 3: Simulated ROC curves for the D-T random tele-
graph model with asymmetric transition probabilities (p =
0.9998,4 = 0.9992) at SNR =-45dB, T'=150s.

We generated a power curve from SNR = -55dB to
-35 dB for the asymmetric case in Figure 4. It seems that
a larger value of 7 is required when p # ¢ for the hybrid
filtered energy/amplitude/energy detector to approximate the
optimal LRT, hence why we used 7 = 150 s for simulations of
the asymmetric random telegraph model. The hybrid detec-
tor has better performance than the filtered energy detector,
and has performance that is comparable to the RT-LRT for
lower SNR values.
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Figure 4: Simulated power curves (Pp vs. SNR) for the D-T
random telegraph model with Pr fixed at 0.1, p =0.9998,9 =
0.9992, and T = 150 s. The RT-LRT is the optimal detector
for this model.

6. CONCLUSION

We have developed the optimal LRT detector and two other
approximately optimal detectors for the (generalized) D-T
random telegraph model. We have shown that the filtered en-
ergy detector is approximately asymptotically optimal under
the regime of low SNR, long observation times, and p close
to 1 (the last two conditions imply a high time-bandwidth
product). The last condition can be achieved by sampling
at a sufficiently fast rate as compared to the rate of ran-
dom transitions. In the case of the asymmetric D-T random
telegraph model, we have shown that a hybrid filtered en-
ergy/amplitude/energy detector is an approximately asymp-
totically optimal detector under the regime of low SNR and
long observation times.
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