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ABSTRACT

This contribution presents a new algorithm of the LMS fam-
ily, derived from a novel orthogonality condition that holds
for overdetermined problems that include an instrumental
variable. This instrumental variable can be used to introduce
higher-order statistics information. The convergence of the
MSE for this new algorithm is theoretically studied, together
with its superior performance when compared with other
similar algorithms, under quite general hypotheses. The al-
gorithm is then applied to the blind identification of moving
average models; simulation results verify the analysis.

1. INTRODUCTION

Many applications of fundamental importance require the
use of adaptive algorithms, like when solving problems with
non-stationary statistics or in real-time implementations, as
in communications, medicine, geophysics, etc.

The first approach of this kind was the Least Mean
Square (LMS) algorithm [1], designed to minimise the Mean
Squared Error (MSE) when performing a linear estimation.
The solution to this problem of linear estimation, with the
MSE as cost function, is attained when the estimation error
and the vector of data used in the estimation are orthogonal,
-1.e. the expected value of the product vanishes.

The same problem can be reformulated using a sum of
squares, instead of the expected value operator, as the scalar
product employed in the orthogonality condition. In this case
an exact recursive solution can be found algebraically, giving
rise to the Recursive Least Squares (RLS) algorithm. The
RLS algorithm is more computationally demanding than the
LMS algorithm, but as a reward, produces estimates asymp-
totically free of noise.

Following a similar procedure than when the RLS was
obtained, if in the orthogonality condition the vector of data
is replaced by an instrumental variable (IV) vector, the Re-
cursive Instrumental Variable (RIV) algorithm is obtained,
see [2] and references therein. The introduction of the IV al-
lows for better properties of the estimated unknowns, like for
example the benefits deriving from the use of higher-order
statistics (HOS).

Another member of the RLS family can be added if the
length of the vector of IV is larger than the number of un-
knowns. The overdetermined problem formulated in this
case is solved via the Overdetermined Recursive Instrumen-
tal Variable (ORIV) algorithm [3]. In the LMS family, the
equivalent to the RIV algorithm is the Generalised Least
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Mean Square (GLMS) algorithm [4], in the sense that can
deal with I'V’s as well. But there is no mathematically-simple
equivalent to the ORIV algorithm. The purpose of this work
is to find such an algorithm.

2. ANEW ORTHOGONALITY CONDITION

Let us assume that the solution wy to a given problem is ob-
tained from
Rwy=r (1)

and that this equation has to be solved adaptively and using
a very reduced computational burden. The matrix R is the
correlation matrix between a vector of instruments ¥(n) =
[X(n), £(n—1), ..., &(n—1+1)]" and a vector of data x(n) =
[x(n), x(n—1), ..., x(n—g+1)], and the vector r is the
correlation vector between the same I'V vector and a desired
response d(n). In what follows / > ¢, so the matrix equation
(1) is overdetermined.

The actual definition of X(r), x(n) and d(n) depends on
the problem to solve.

In real applications the correlations are not known, but
they have to be estimated. Assuming ergodic series, the ex-
pected value operator can be approximated by temporal av-
erages, so R and r can be estimated respectively by:

D(n) = i/\"*’}z(i)xf(i) ()

=

z(n) =y A" E(0)d (D) (3)
i=
The forgetting factor 0 < A < 1 must take a value less than 1
in non-stationary problems. Using these estimates the prob-
lem now turns to:

®(n)w(n) = z(n) 4)

Equation (4) can be solved recursively using the ORIV algo-
rithm, shown in table 1.

From the update recursion for the weight vector w(n)
(11), another for the error vector Aw(n) = w(n) — wg can be
derived:

Aw(n) = [I—K(n)X' (n)|Aw(n—1)+K(n)ag(n)  (12)
where a¢(n) = v(n) — X" (n)wy.

If in (12) the definition of the gain matrix K(n) =
F='(n)X(n)A~!(n) is used, and then multiplied by I (1), we
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Table 1: The ORIV algorithm [3]

Initial Conditions
@ (0) = O[I4x¢|0gx1—4]; O = arbitrary scalar
F1(0) = 3Lgxgs w(0) = 0;2(0) = 0

Recursive process, forn = 1,2...

Obtain {%(n), x(n), d(n) } and construct X(n) and x(n)

X(n) = [®' (n—1)%(n) x(n)] 5)
)\2/\(1,[) — <—)Zt(3))?(n) /(\)> (6)

Ml (n) = 35 [M = 1) = KX () (n—1)]
() = <ft<”§(‘5)‘ 1)) ™
a(n) =v(n) — X (n)w(n—1) 8)
z(n) =Az(n—1)+x(n)d(n) 9
®(n) =AD(n—1)+5%(n)x' (n) (10)
wn)=wn—1)+K(n)a(n) (11)

get a useful expression:
[ (n)Aw(n) =AT (n— 1)Aw(n—1)+

+X(n)/\71(n)cro(n) (13

where the update expression for ' (n) = ® (n)®(n) has been
taken into account :

F(n) =A T (n—1)+X(n)A"(n)X (n)

Expression (13) is a difference equation for I (n)Aw(n), and
because the total solution must tend to cero to verify the con-
vergence in the mean (tracking) of the ORIV algorithm, the
particular solution must vanish.

It can be shown that this last requisite is accomplished,
assuming stationarity of the statistics involved in the prob-
lem, if

EX(m)A~! (n)ag(n)] = 0 (14)

That is, a new orthogonality condition is derived between the
matrix of data X (n), and the vector of error d o(n), connected
by the matrix A(n). In particular, this orthogonality principle
holds for overdetermined problems involving HOS; as such it
is called the Overdetermined and Generalised Orthogonality
Principle, and it must be satisfied by the solution of equation

(D).
3. THE AOGLMS ALGORITHM

In this section, borrowing some ideas from the stochastic gra-
dient methods, a new LMS-type algorithm is derived. The

derivation is split into 3 steps:

3.1 Step1:

Inserting the orthogonality condition (14) into an update re-
cursion will guaranty convergence to the solution of (4):

w(n) =w(n— 1)+%X(n)/\71(n)a(n) (15)

where [ is the step-size, that as usual controls the conver-
gence, and n assures normalization of the magnitudes under
stationary statistics. The algorithm based on the update re-
cursion (15) is the LMS/ORIV of [5].

3.2 Step 2:

To simplify the previous recursion, using (5), (6), (7) and (8),
the gradient can be written as a sum of two vectors:

XA Y (n)a(n) =
=Ax(n)¥ (n)z(n—1) —D(n—1)w(n—1)] (16)
+ @ (n)[F(n)d (n) — F(n)x" (n)w(n —1)]

Each of these vectors has a null expected value, which means
that any of them, independently, can serve as a proper gradi-
ent to construct the corresponding stochastic gradient algo-
rithm.

It can be proven that the one containing the averaged
quantities ®(n) and z(n) in the difference, that is, the first
summand, yields the algorithm providing the best estimates.
So now we propose this new update recursion:

w(n) =wh—1)+

+ %x(n)ft WEr—1)—On—win—1)] 7

3.3 Step 3:

To reduce the operations per iteration, the update recursion
of é(n) = z(n) — ®(n)w(n) in (17), called the averaged error
vector, is obtained from (9), (10) and (17),

e(n) =[A - %q’(n)X(n)f’(n)}é(n — 1) +x(n)e(n)

This last expression means that &(n) is a filtered version of
X(n)e(n) and also that most of the computational burden is in
the product ®(n)x(n)%' (n). In order to reduce this computa-
tional burden, this product is replaced by a new free parame-
ter of the algorithm f a scalar.

With these final simplifications we get to the desired new
algorithm, summarised in table 2.

This new algorithm is called Averaged Overdetermined
and Generalised LMS algorithm (AOGLMS). The adjective
‘generalised’ comes from the fact that can deal with IV’s.

The simulation results will justify all the used simplifica-
tions.

4. CONVERGENCE ANALYSIS OF THE AOGLMS
ALGORITHM

The function MSE(n) will be computed from the weight
error autocorrelation matrix Ra(n) = E[Aw(n)Aw! (n)], as
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Table 2: The AOGLMS algorithm

Initial Conditions
f, U = arbitrary scalar; w(0) = 0; &(0) =0

Recursive process, forn = 1,2...

Obtain {%(n), x(n), d(n) } and construct X(n) and x(n)
e(n) =d(n) —w(n—1)x(n) (18)
e(n) = fe(n—1)+ (1 - f)i(n)e(n) (19)
w(n) =w(n— 1)+ px(n)¥ (n)é(n) (20)

MSE(n) = Tr{Ra(n)}. From (20) and using (18) and (19):
Dw(n) =[I — px(n)F (n)%(n)x" (n)]Aw(n —1)—
n_l TR T .
) S RO
) 3 1 el
where [, = u(1—f)/(1 — f*) and eg(n) = d(n) — wix(n).

Assume that for small p the following idependence assump-
tion (IA) holds:

(IA) The weight vector w(n), and hence, the error vector,
is independent of the vector of data x(7) and of the instru-
mental variable X(¢) fori = 1..n— 1.

This kind of soft independence assumption will simplify the
mathematics; independence assumptions have been proven
to yield quite accurate results. It can be shown from (21),
working in the lower possible order in [, that:
1. Ra(n,n—j)=0forj=2...n.

2. Ra(nyn—1) ~Rpa(n—1).

where Ra(n,i) = E[Aw(n)Aw(i)] and a ~ b means that a and
b behave nearly the same.

In this way, from (21), we can finally get:

Ra(n) =Ra(n —1) — plooX (0)RA(n— 1) —
—HeRp(n—1)X(0) — U fX(0)RA(R —2)—  (22)
—Heo fRA(n —2)X(0) 4 Nh(n)

where Ni(n) groups all the independent terms:
L
1 i )+
T éffx zf 12,10
i i 1
i:fv() fV()iz,; (D)
tHa Y S EWe(n, i) We(n, )]

i,j=1

Nh(n) =

+ oo

where the bias in the estimates has been considered:

1 L

Aw(o)] = ——— Ty(i
E[Aw(e0)] Z’i;éffx(f);;fy() (23)

This expression for the bias can be obtained from expression
(21), under IA assuming that the involved variables are un-
correlated if they are more than L time instants apart.

In previous expressions these definitions are considered
under stationary statistics:

E[x(m)¥ (n)(1)eo ()] = E[W, (n,i)] = y(n — 1)

X(n— 1) = Efx(n) (n)3(i)x (1)

From a particular solution of (22), it can be shown that
the Z-transform of MSE(n) is:

MSE(Z) =
Tr{ !
I— (1= 2HeX (0))z" + 2Heo f X (0)z 2

This expression is always valid provided that the zeros of the
denominator lie inside the unit circle V /\iX i=1..p, )\iX is the
i-th eigenvalue of X(0). Given that AX > 0V i, because x(0)
is positive definite, we can always find a U that makes the
zeros lie inside the unit circle, -i.e. there is no convergence
problem for the AOGLMS algorithm.

The noise terms that finally form the MSE are:

Nh(Z) }

1. The noise coming from the bias (23).

2. Another term appearing due to the fact that although we
are imposing E[%(n)eq(n)] = 0, its higher-order moments,
-i.e. E[X(n)eo(n)% (n)eg(n)] # 0, do not have to vanish.

5. COMPARISON WITH EXISTING ALGORITHMS

The novel AOGLMS algorithm will be applied to the blind
identification of moving average (MA) systems following the
paper by Giannakis and Mendel [6]. The MA process is de-
fined by:
q
yn)=73%
=0

bis(n—1i)+v(n)

The driving process s(n) is independent and identically
distributed, with one-sided exponential probability density
function of zero mean, unit variance and skewness 2. Ad-
ditive coloured Gaussian noise v(n) is also present.

The AOGLMS algorithm will be compared with similar
existing algorithms, already mention in this contribution:
1. The ORIV algorithm
2. The LMS/ORIV algorithm
3. The GLMS algorithm.

Two models are studied here, where the vector of coefficients

b=1[bg by ... by is given by:
e Model A=[1 —0.8].
e Model B=[1 — 1.1314 0.6400].

The learning curve for model A is shown in figure 1, the
convergence time of all the algorithms has been set to ap-
proximately 30000 iterations. As expected the best results
are given by ORIV, followed closely by LMS/ORIV and
AOGLMS. It can be proven that the GLMS can not conver-
gence for this model because the associated matrix R is not
positive definite nor negative definite. This problem is not en-
countered in model B, as can be seen in figure 2. For model
B the convergence time is set to 40000 iterations. The best
results are again provided by ORIV, followed by LMS/ORIV,
AOGLMS and GLMS respectively. A high SNR benefits the
ORIV algorithm.
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Figure 1: Learning curve for model A and SNR= 10 dB.
& ORIV, - LMS/ORIV with g = 1073 and x AOGLMS
with u = 107440 and £ = 0.999.

6. CONCLUSIONS

In this work a new orthogonality condition valid for overde-
termined and generalised problems has been presented, and
has been used to derive a new LMS-type algorithm, the
AOGLMS, that can be applied to the same problem that
the ORIV and LMS/ORIV algorithms. The convergence of
the new algorithm has been studied theoretically under quite
general assumptions. Simulation results show a behaviour
of the novel AOGLMS close to the behaviour of ORIV and
LMS/ORIV algorithms but with the further advantage of a
much reduced computational burden.
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