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Abstract 

   For a scalable video coder to remain efficient over a 
wide range of bitrates, the motion information should be 
represented in a scalable manner. Indeed, especially at low 
bitrates tradeoffs should be made between motion 
information representation and texture information 
accuracy. Consequently, motion vector scalability has 
emerged as an important research topic, in conjunction 
with fully scalable video compression schemes. In this 
paper, a new scheme providing motion vector scalability is 
proposed. Starting from the MC-EZBC scalable wavelet 
video coder [1], multiple motion layers are constructed 
according to the importance of motion information. The 
overhead associated with this layered representation is 
proven to be negligible. Hence, the rate-distortion 
performance at high bit-rates is about the same as that of 
the scheme without motion information scalability, while at 
low bitrates the scheme benefits from this scalable coding 
strategy. 
 

1. INTRODUCTION 
 

Motion compensated wavelet video coding has emerged as 
an important research topic, due to its ability to provide 
easy bitstream adaptation to bandwidth variations and 
efficient transmission in different Quality-of-Service 
scenarios. A popular wavelet video coding scheme is 
MC-EZBC (Motion Compensated Embedded Zero Block 
Coding) that was proposed by Woods et al [1]. However, 
their implementation (see Fig.1) encodes the motion 
information in a non-scalable manner, which results in a 
reduced coding efficiency performance at low bit-rates as 
opposed to state of the art non-scalable coding techniques 
like that provided by the H.264 standard. Different 
tradeoffs between motion information and texture coding 
should be made for ensuring optimal rate-distortion (R-D) 
performance, depending on the bitrate and sequence 
characteristics.  
        Figure 1: Basic structure of MC-EZBC 

Without some form of motion information scalability, only 
a very small bit budget can be allocated at low bitrates for 
texture coding. Hence, layered representations of the 
motion information are necessary to provide good R-D 
performance of scalable coders over a large range of 
bitrates. 
   In [9] and [2], scalable motion vector coding schemes 
are proposed, in which the motion vector fields are 
decomposed so that they can be progressively decoded. In 
[2] this is related to the 3-Step Search algorithm presented 
in [3]. In [4] another scalable motion vector coding scheme 
is proposed by Taubman at el. In this scheme motion 
parameters are scalably coded using techniques similar to 
those embodied in the JPEG2000 image compression 
standard [5], i.e. different quality layers are constructed and 
the decoder receives and uses only the most appropriate 
parameter quality layer. In [6], Hang at el [6] split the 
motion information in the MC-EZBC into a base layer and 
an enhancement layer, employing different motion vector 
block sizes.  
   In this paper, we propose an alternative algorithm for 
building and coding a layered representation of motion 
information in the MC-EZBC coder. We define a metric for 
determining the motion vector importance and then use this 
metric for constructing different importance motion vector 
layers. 
   We describe our scalable motion vector coding scheme 
in Section 2. In Section 3, experimental results are 
presented, and in the last section the conclusion and future 
work are given. 
 

2. SCALABLE MOTION VECTOR CODING 
 

2.1 New Motion Vector Importance Metric 
   In the motion estimation process of MC-EZBC, a full   
5-level motion vector quad-tree is composed for every 
64-by-64 block in the image. During the process the 
hierarchical variable size block matching (HVSBM) 
motion estimation algorithm is used to speed up the search 
process. After generating the full motion vector tree, a 
bottom-up merger [7] is utilized. The motion vector 
refining process is showed in Fig.2. 
   In our proposed scheme, the description of motion 
vector fields is transmitted in the form of multi-quality 
layers, using the spared bits to better encode the texture 
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coefficients. Now the key problem is how to measure the 
importance of the motion vectors and thus to determine 
which motion vectors should be transmitted with a high 
priority, and how to ensure the encoding  performance 
gain thanks to the spared bit to outperform the suffered 
performance due to the less accurate motion vector 
description.      
   The following measure is proposed for the importance 
of motion vectors: 
        (1)                                 |BE_F1 -BE_F0|=DBEn
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motion information loss, ∆Dtextn represents the distortion 
reduction in texture data, and ∆Rmvn designates the number 
of bits saved in the motion vector field. In the sequel, we 
eliminate for simplicity the subscript n in our notation.  

    

               

   To ensure an approximate solution for (3), two other 
parameters, Saved_MV and Suffered_PSNR are introduced 
in our scheme. Saved_MV is the upper bound of the lost 
motion vectors, which is measured by the lost motion 
vector percentage and Suffered_PSNR is the maximum 
permitted value of ∆Dmv(∆Rmv) in (3) due to the motion 
information loss during the process of motion vector 
coding scan and its value should be less than  ∆Dtext(∆Rmv) 
in (3) when ∆Rmv reaches its maximum value. In practice it 
is hard to get the exact value ∆Rmv during the process of 
motion vector coding. We approximately use the lost 
motion vector percentage to measure the value ∆Rmv, since 
the ∆Rmv is approximately proportional to the number of 
saved motion vectors.  

      N:  number of pixels in a motion block 
      frame1:  current frame 
      frame0:  reference frame 
      dx, dy:  motion vector components 
  BE_F0:  quadratic error measure between the  
              block in the current frame and the block without     
              displacement in the reference frame 
      BE_F1:  quadratic error measure between the   
             block in the current frame and the matched block      
             in the reference frame 
      DBEn:  difference between BE_F0 and BE_F1 for the  
              n-th block. 
BE_F1 represents the incurred block error when the motion 
vector is adopted, while BE_F0 quantifies the block error 
when no motion vector is used. Thus, DBEn measures the 
incurred distortion due to the inaccurate motion 
representation. We use DBEn for classifying the motion 
vector n in different priority layers. The motion vector n is 
called significant if its DBEn value exceeds a 
predetermined threshold. Otherwise, it is called 
insignificant and it will not be transmitted. 

 
Figure 2: HVSBM algorithm detailed over 3 levels 
 
   To ensure encoding performance gains due to this 
layered motion vector representation, optimal motion 
information truncation points should be determined for 
different bit rates Rn at a specific spatial resolution: 
determine the truncation points n such that  
       min Davn(R=RMVn+Rtextn<=Ravn)             (2) 
where Ravn and Davn are the total available rate and 
distortion for a GOP, and the RMVn and Rtextn are the rate 
budgets for the motion vector field and texture coefficients. 
However, the coding distortion of a block cannot be 
directly obtained at the motion estimation stage, since the 
overall distortion will be available only after the motion 

information is available to perform the spatio-temporal 
subband analysis. 
   Thus, instead of solving the rate-distortion optimization 
problem of (2) in one step, the equation (3) is used to 
approximately solve the optimization problem indirectly: 
       min (∆Dmvn(∆Rmvn)+∆Dtextn(∆Rmvn))         (3) 
where the ∆Dmvn  represents the suffered quality due to the 

   
2.2. Motion Vector Bitstream Configuration  
   Fig.3 depicts the employed motion information 
configuration. We use a GOP size of 16 and the number of 
temporal decomposition levels is 4, so there are 15 motion 
vector fields in one GOP.  
   Fig.4 represents the global motion vector bitstream 
layer configuration. The multi-layers are formed by motion 
vector coding scans with different parameter pairs of 
Saved_MV and Suffered_PSNR. The specific steps are 
described in the next section. Theoretically, any number of 
bitstream layers can be formed. In practice, we just form 
several layers and each layer is associated to a range of 
bitrates. This is motivated by the fact that the motion vector 
bitrate is negligible at high bitrates and thus the 
performance gain of the scalable strategy disappears.  
   The bitstream header consists of two parts (see Fig. 4): 
the MAP and the Layer Choose Marker. The MAP offers 
the motion vector quad tree information and the Layer 
Choose Marker offers the layers bit rate information to 
facilitate the encoder to select appropriate layers in 
different bitrate applications. For example, if the available 
bit rate is 128kbps, then the encoder will compare 128 with 
the Layer Choose Marker of the first layer: if the Layer 
Choose Marker is bigger than 128, this layer will be chosen 
to be transmitted; if not, the next Layer Choose Marker 
will be compared with 128 and the encoder will determine 
whether this layer should be transmitted till the Layer 
Choose Marker is bigger than 128. The value of the Layer 
Choose Marker is the upper limit of the bit range of this 
layer which Layer Choose Marker belongs to. Note that the 
Layer Choose Marker is the only additional overhead 
compared to the MC-EZBC coder without motion 
information scalability. 
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Figure 3. The basic motion information configuration in one GOP. 

 
Figure 4.  Motion vector global layer configuration. 
 
2.3. Coding Steps 
 
(1) HVSBM motion estimation, quad-tree leaf 

pruning [7]; calculate DBEn values for each 
motion vector block using Eq. (1).  

(2) Initialization 
  Threshold = 1; 

  Saved_MV and Suffered_PSNR=the value for     
      the highest temporal level of layer1.      

(3) Motion vector coding scan. 
 for (i = 1; i <= the number of the layers; i++) 
   {     for( j=1; j<=the number of temporal levels; j++ ) 
  { while(saved_mv<  Saved_MV && 
                  suffered_psnr < Suffered_PSNR) 
    { 
     if(DBEn< Threshold ) 
                    {  
  //this block is insignificant and does not need to be transmitted 
      mvx = 0;     
                      mvy = 0;                    
                    } 
  // Update the threshold and begin the next scan 
                  Threshold++; 
                 }                
     Update Saved_MV and Suffered_PSNR for the next 

lower temporal level; 
         } 
      Update Saved_MV and Suffered_PSNR for the  
                  next layer;    
    } 
(4) Entropy coding of each layer. 
  The difference between adjacent motion vectors 
is encoded using an arithmetic coding [8]. 
 

3． EXPERIMENTAL RESULTS 
 

Four layers are considered in our simulations 
(layer1~layer4 for 150kbps ~ 500kbps). Each layer spans 

50kbps bitrate except layer1, used under 150kbps. 
The results in Fig.5 and Fig.7 illustrate the fact that the 
proposed scheme outperforms the original MC-EZBC 
substantially at low bitrates. At high bitrates (500kbps – see 
Fig.6 and 8), for the “Foreman” sequence there is no 
performance loss, while for the “Coastguard” there is only 
0.01dB loss due to the overhead of the scheme. Tab.1 and 2 
present more precisely the gains of the scalable scheme. In 
Fig. 9 and 10 we present the PSNR results for bitrates 
ranging from 150kbps to 500kbps, using two typical video 
sequences Foreman and Coastguard (CIF, 30 fps). 
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Figure 5: PSNR vs. GOP number of the CIF Foreman sequence at 
bit-rate 150kbps   
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Figure 6: PSNR vs. GOP number of the CIF Foreman sequence at 

bit-rate 500kbps 
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 Figure 7: PSNR vs. GOP number of the CIF Coastguard 
sequence at bit-rate 150kbps 
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Figure 8: PSNR vs. GOP number of the CIF Coastguard 
sequence at bit-rate 500kbps 

 4. CONCLUSION AND FUTURE WORK 
     
   In this paper, we have proposed a new algorithm to 
measure the importance of motion vectors and based on 
this, we have built multiple motion information layers that 
introduce motion information scalability in the MC-EZBC 
algorithm. With our scheme, a better rate bit allocation 
tradeoff can be achieved between the motion vector field 
and the texture coding. Improved performance of this 
scheme can be especially observed at low bit-rates.  
   In the future, we plan to improve our algorithm by also 
considering the texture characteristics. Joint tradeoffs 
between the accuracy of motion information and texture 
coding representation could then be performed at a given 
bit-rate. 

  Rate(kbps) MV bits PSNR 
MC-EZBC+  150 704952 28.01 
MC-EZBC 150 753032 27.16 
MC-EZBC+ 500 729862 35.26 
MC-EZBC 500 753032 35.24 
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