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1Dept. Teorı́a de la Señal y Comunicaciones, Universidad Carlos III de Madrid, Spain.
e-mail:marce@tsc.uc3m.es

ABSTRACT
In this paper we present a new blind equalization algorithm
that exploits the parallelism between the probability density
function (PDF) of a random variable and a power spectral
density (PSD). By using the PDF/PSD analogy, instead of
minimizing the distance between the PDF of the input signal
and the PDF at the output of the equalizer (an information-
theoretic criterion), we solve a line spectrum fitting problem
(a second-order statistics criterion) in a transformed domain.
For a binary input, we use the fact that the ideal autocor-
relation matrix in the transformed domain has rank 2 to de-
velop batch and online projection-based algorithms. Numeri-
cal simulations demonstrate the performance of the proposed
technique in comparison to batch cumulant-based methods
as well as to conventional online blind algorithms such as
the constant modulus algorithm (CMA).

1. INTRODUCTION

In many communication systems, digital signals are trans-
mitted through an unknown bandlimited channel with severe
intersymbol interference (ISI). When a training sequence is
not available, blind equalization techniques must be used to
recover the input signal. These techniques exploit the knowl-
edge about the statistical properties of the input signal or the
structure of the channel [1].

Benveniste et al. [2] showed that a sufficient condition
for perfect equalization is that the PDF of the recovered sig-
nal be equal to the PDF of the original input signal (a train
of impulse functions for an M-ary input constellation). Fol-
lowing this PDF matching approach, several information-
theoretic criteria have been proposed for blind equalization
and deconvolution [3, 4].

On the other hand, the periodic extension of the PDF of
a random variable (normalized to be between −π and π) can
be viewed as the power spectral density (PSD) of a certain
stochastic process. This analogy has been previously ex-
ploited to estimate the PDF of a random variable by using
PSD estimate methods [5, 6]. Similar ideas have also been
applied to blind source separation problems [7], as well as to
develop new nonlinear models [8].

In this paper we exploit the PDF/PSD parallelism for
blind restoration of binary input signals. Instead of pursu-
ing a PDF matching approach, here we fit the estimated PSD
at the output of the equalizer to the target PSD, which cor-
responds to a line spectrum for a digital input signal. The
rationale behind posing blind equalization as a PSD fitting
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problem is that some properties of the target PSD can be
exploited in the algorithm. For instance, for a binary input
signal the target autocorrelation has rank 2; this fact is ex-
ploited to develop efficient batch and online projection-based
algorithms. Through numerical simulations, the proposed
method is compared to batch cumulant-based algorithms [9]
and to online blind adaptive algorithms [10].

2. PROBLEM FORMULATION

We consider a baud-rate sampled baseband representation of
a digital communications system. Throughout this paper we
assume an equiprobable i.i.d. binary signal s[n] ∈ {−1,+1};
the method, however, can be easily generalized to M-ary con-
stellations. The binary signal is sent through a linear time-
invariant channel with coefficients h[n]. Therefore, the chan-
nel output is obtained by

x[n] = ∑
k

h[k]s[n− k]+ e[n],

where e[n] is a zero-mean white Gaussian noise process.
The objective of a blind linear equalizer is to remove the

ISI at its output without using any training sequence. Usu-
ally, the equalizer is designed as a FIR filter with L coeffi-
cients w; then, its output is given by

y[n] =
L−1

∑
k=0

w[k]x[n− k] = wT xn.

Benveniste et al. [2] proved that a sufficient condition for
perfect equalization is that the PDF of the recovered symbols
y[n] be equal to the PDF of the original input signal s[n] (a
pair of impulse functions for a binary input). Later, Shalvi
and Weinstein [9] proved that perfect recovery of the input
signal (in a noiseless situation) can be achieved by maximiz-
ing the output kurtosis

Ky = E
[
|y[n]|4

]
−2

(
E

[
|y[n]|2

])2−
∣∣E [

y[n]2
]∣∣2

,

subject to E
[
|y[n]|2

]
= E

[
|s[n]|2

]
.

On the other hand, online algorithms typically minimize
a nonlinear cost function employing a gradient descent ap-
proach. The constant modulus algorithm (CMA) [10], for
instance, minimizes the following cost function

J(w) = E
[(
|y[n]|2−R2

)2
]
,

where R2 = E
[
|s[n]|4

]
/E

[
|s[n]|2

]
. Applying a gradient des-

cent technique, the CMA actualizes the equalizer taps as

wn+1 = wn−µCMA
(
|y[n]|2−R2

)
y[n]xn.
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3. PDF/PSD FITTING

The probability density function (PDF) of a random variable
has similar properties to a power spectral density (PSD). This
analogy has been previously exploited to estimate the PDF of
a random variable by using PSD estimate methods [5, 6].

In particular, let us assume that we are given a set of
N observations at the channel output: (x1, . . . ,xN), where
xn = (x[n], . . . ,x[n−L+1])T . The output of the equalizer,
y[n] = wT xn, is a random variable (RV) with PDF pY(y).
Without loss of generality we can assume that y[n] is con-
strained to be between −π and π: this can be achieved by a
proper normalization step. The periodic extension of pY(y)
can alternatively be viewed as the PSD of a certain wide
sense stationary (WSS) stochastic process, whose autocor-
relation function is given by

ry[k] =
1

2π

∫
π

−π

pY(y)e jykdy =
1

2π
E(e jyk). (1)

Note that, according to this analogy, the output of the
equalizer plays here the role of a radian frequency ω . Fur-
thermore, the autocorrelation function (1) can be estimated
as

r̂y[k] =
1

2πN

N−1

∑
n=0

e jy[n]k. (2)

In an ideal noiseless situation the linear filter w attains
perfect equalization if

y[n] = wT xn = Ks[n−d],

where d is the equalizer’s delay and K is an arbitrary scaling
factor. On the other hand, in digital communications the in-
put signal s[n] belongs to a finite alphabet. For example, for
an M-ary input constellation, the target PSD is a line spec-
trum composed of M equispaced impulse functions. Corre-
spondingly, its autocorrelation function can be written as

rs[k] =
1

2πM

M

∑
i=1

e jωik, (3)

where ωi is a set of known radian frequencies, which depend
on the input constellation. Specifically, for a binary input
signal the target PSD has two impulse functions at (−ω1,ω1)
and (3) reduces to

rs[k] =
1

2π
cos(ω1k).

The basic idea of the paper consists in finding the coef-
ficients of the equalizer w with the goal of fitting the esti-
mated autocorrelation function (2) to the target autocorrela-
tion (3), which corresponds to a line spectrum PSD. Actually,
we are fitting the estimated PDF at the output of the equal-
izer to the known PDF of the input constellation: this is a
widely used information-theoretic criterion for blind equal-
ization and deconvolution. Several distance measures such
as the Kullback-Leibler distance [3], or a quadratic distance
[4] can be used for PDF fitting. As an alternative, in this pa-
per we exploit the fact that, after a nonlinear transformation
given by (2), the problem reduces to fit the estimated and tar-
get PSD’s, for which a number of classical techniques may
be applied. In the next section we discuss batch an on-line
efficient procedures to solve this line spectrum fitting prob-
lem.

4. PROPOSED METHOD

4.1 Batch Algorithm

Let us consider a set of N outputs of the equalizer y[n],
n = 1, . . . ,N. It is important at this point to remember that
we assume that y[n] has been normalized to be constrained
between −π and π: therefore it can be viewed as a radian
frequency. In order to attain perfect equalization, we should
find an equalizer such as

r̂y[k] = rs[k], ∀k. (4)

If we fit the estimated and target autocorrelation func-
tions only at lags k = 0, . . . ,P; Eq. (4) can be written for a
binary input as

1 · · · 1
e jy[1] · · · e jy[N]

e j2y[1] · · · e j2y[N]

...
. . .

...
e jPy[1] · · · e jPy[N]


︸ ︷︷ ︸

(P+1)×N


1
1
...
1
1

 =


1 1

e jω1 e− jω1

e j2ω1 e− j2ω1

...
...

e jPω1 e− jPω1


︸ ︷︷ ︸

(P+1)×2

[
1
1

]
,

or in matrix notation

A(y)1N = A(ω)12,

where 1N denotes an N × 1 vector of ones. The radian fre-
quency ω1 can be arbitrarily chosen as long as |ω1| < π .
However, a good choice is ω1 = π/(P + 1), in this way the
columns of the matrix A(ω) become orthogonal. Moreover,
this choice seems to speed up the algorithm.

The matrix A(ω) is full column rank; then, if we take
P + 1 ≥ 2, it follows that rank(A(ω)) = 2. The proposed
batch method is an iterative technique that consists in three
stages: in the first step the columns of the (P+1)×N matrix
A(y) are projected into the subspace spanned by the columns
of A(ω), i.e.,

As(y) = PsA(y),

where the projection matrix is given by

Ps = A(ω)
(
A(ω)HA(ω)

)−1
A(ω)H , (5)

and (·)H denotes the conjugate transpose.
In the second step, from each column of the projected

matrix as(y[n]) = (a1(y[n]), . . . ,aP+1(y[n]))T , we estimate
the new objective outputs of the equalizer ŷ[n] as the averaged
phase differences between consecutive elements of as(y[n]),
i.e.,

ŷ[n] =
1
P

P

∑
j=1

[
arg(a j+1(y[n]))− arg(a j(y[n]))

]
, (6)

where arg(·) denotes the unwrapped phase. The step resem-
bles the weighted phase averager (WPA) method proposed to
estimate the frequency of a single complex exponential [11].
By using the new estimated outputs ŷ = (ŷ[1], . . . , ŷ[N])T , in
the final step the new equalizer is obtained as

w = (XT X)−1XT ŷ, (7)
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where X = [x1| . . . |xN ]T .
The equalizer obtained as (7) is used to obtain the new

outputs y and the procedure is repeated. Regarding the con-
vergence of this method, although a formal proof is not in-
cluded here due to the lack of space, we can point out that
the proposed iterative method is in fact a projection onto con-
vex set (POCS) algorithm [12]: note that (5), (6) and (7) can
be viewed as projection operators. Therefore, the conver-
gence of the iterative batch algorithm to a point belonging
to the intersection of the closed convex sets can be guaran-
teed. From a practical standpoint the iterations are stopped
when ||wk+1 −wk||2 ≤ ε . Next, we show a summary of the
proposed procedure.

Initialize w, choose P and obtain A(y) (y[n] ∈ (−π,π]).
Calculate the projection matrix Ps as (5).
repeat

Obtain the projected matrix As(y) = PsA(y).
Estimate the new desired outputs as (6).
Calculate the new equalizer w as (7).
Calculate y = Xw and update A(y).

until convergence

Algorithm 1: Summary of the batch algorithm.

4.2 Online Algorithm

The online algorithm follows the same steps of the batch pro-
cedure. With each new data sample, the current equalizer is
employed to obtain the output y[n] = wT xn and then con-

struct the vector a(y[n]) =
(

1,e jy[n], . . . ,e jPy[n]
)T

. Similarly

to the batch procedure this vector is projected into the sub-
space spanned by the columns of As(ω) as

as(y[n]) = Psa(y[n]). (8)

The estimate ŷ[n] is again obtained by means of (6). In
the final step, we apply an iteration of the least mean square
(LMS) algorithm that uses ŷ[n] as desired output

wn+1 = wn + µ(ŷ[n]− y[n])xn, (9)

where µ > 0 is the step size of the LMS. A summary of the
proposed online algorithm is shown next.

Initialize w, choose P and µ > 0.
Calculate the projection matrix Ps as (5).
for n = 1,2, . . . do

y[n] = wT xn.

a(y[n]) =
(

1,e jy[n], . . . ,e jPy[n]
)T

.

Obtain the projected vector as(y[n]) = Psa(y[n]).
Estimate the new objective outputs as (6).
Update wn+1 = wn + µ(ŷ[n]− y[n])xn.

end for

Algorithm 2: Summary of the online algorithm.

5. SIMULATION RESULTS

All the simulation results have been obtained using a binary
input signal and P = 5. The equalizers have been initialized

a)

b)

Figure 1: Evaluation of the batch PBA and the SW algorithm
for different SNR’s and data block sizes. L = 31 and channel
H1(z). a) Percentage of successful trials, b) ISI (dB).

following the tap centering strategy, and we have used the ISI
as a measure of equalization performance, which is defined
as

ISI = 10log10
∑n |θn|2−maxn |θn|2

maxn |θn|2
, (10)

where θ = h∗w is the combined channel-equalizer impulse
response.

The batch algorithm was tested, for low (SNR = 30 dB)
and moderate (SNR = 10 dB) noise situations, and its per-
formance was compared against the Shalvi and Weinstein
algorithm [9] (denoted as SW), which is based on fourth-
order cumulants. In the first example a binary signal is sent
through the channel H1(z) = (0.4+ z−1−0.7z−2 +0.6z−3 +
0.3z−4 − 0.4z−5 + 0.1z−6) (used in [9]) and, at the channel
output, white Gaussian noise is added.

Fig. 1 compares the projection-based algorithm (denoted
as PBA) and the SW algorithms for equalizers of length
L = 31 using blocks of input data ranging from N = 100 to
500 samples. For both methods, if the final ISI after a trial
was below -5 dB, we considered that the channel was suc-
cessfully equalized, since with this level of ISI it is already
possible to switch to a decision-directed mode. For each data
block size and noise level, both algorithms were tested in 500
Monte-Carlo trials. In particular, Fig. 1.a shows the percent-
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Figure 2: Final ISI for the PBA and the SW algorithm vs.
equalizer length. N = 400, channel H1(z).

age of trials in which each algorithm successfully converged,
and Fig. 1.b shows the mean ISI level after convergence for
the successful trials. Fig. 2 compares the performance of
both algorithms for different equalizer lengths. Now the data
block size is N = 400 and the equalizer length ranges from
L = 5 to 79. From Figs. 1, and 2 we see that the proposed
algorithm offers better performance than the SW algorithm,
with a similar computational cost.

In our second example we test the online version of the
PBA in comparison to the CMA [10]. Again we use a bi-
nary input signal distorted by the channel H2(z) = (0.2258+
0.5161z−1 +0.6452z−2 +0.5161z−3) and corrupted by white
Gaussian noise with a SNR of 30 dB. The equalizer length is
L = 21 and the chosen parameters have been µ = 0.01 for
PBA and µ = 0.005 for CMA: these are the largest stepsizes
for which both algorithms converged in all trials. The av-
eraged results of 100 independent simulations are compared
in Fig. 3, where we can see that PBA converges faster than
CMA.

6. CONCLUSIONS

Based on the equivalence between PDF and PSD functions,
in this paper we have proposed a new blind equalization tech-
nique for binary input signals. By posing blind equalization
as a line spectrum fitting problem, some properties of the tar-
get PSD can be exploited in the algorithm. Using these prop-
erties, batch and adaptive (online) versions of a POCS-like
fitting algorithm have been described. A number of simu-
lation examples demonstrate that the batch algorithm shows
better performance than cumulant-based techniques. More-
over, the online version of the algorithm seems to be faster
than the CMA with a similar computational cost.

Future lines of research include the extension of the pro-
posed algorithms to multilevel and complex modulations as
well as the application of similar ideas to blind source sepa-
ration (BSS) problems.
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