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ABSTRACT

A new direct adaptive algorithm is proposed for multichan-
nel active noise control (ANC) and sound reproduction (SR)
when primary and secondary path dynamics are all uncertain
and changeable. To attenuate the canceling errors or repro-
duction errors, two kinds of virtual error vectors are intro-
duced and are forced into zero by adjusting three adaptive
FIR matrix filters in an on-line manner. It is shown that the
convergence of the canceling or reproduction errors to zero
can be attained at the objective points. The proposed algo-
rithm can tune an inverse controller matrix directly without
need of explicit identification of the secondary path channels,
and requires neither any dither signals nor the PE property of
the source signals for the identifiability.

1. INTRODUCTION

Active noise control (ANC) for suppressing unwanted low
frequency noises from primary sources is attained by emitting
control sounds from secondary loudspeakers to realize can-
cellation at objective points [1][2]. Sound reproduction (SR)
using multiple loudspeakers and microphones is regarded as
a special case of multichannel ANC [3][4]. Since the path
channels cannot be precisely modeled and may be uncertainly
changeable, adaptive tuning of the feedforward inverse con-
troller is essentially needed [2]. When the secondary path
channels are uncertain, the filtered-x adaptive algorithms are
performed jointly with identification of the secondary path
channels [2]-[8]. The on-line identification sometimes needs
dither noises for assuring the persistently exciting (PE) prop-
erty of the reference signals to attain the identifiability of the
path channel models.

The purpose of this paper to propose a new adaptive algo-
rithm which can directly tune the multichannel inverse con-
troller without explicit identification of the channels unlike

the ordinary filtered-x algorithms using the identified secondary

path models. To reduce the canceling errors, two virtual er-
ror vectors are introduced and are forced into zero by ad-
justing parameters in three adaptive FIR matrix filters in an
online manner. It is shown that the convergence of the can-
celing error vector to zero can be attained if the parameters
are adjusted and converge to any constants so that the two
virtual error vectors can become zero. Unlike the ordinary
filtered-x algorithms, the proposed approach can tune an in-
verse controller matrix directly without need of explicit iden-
tification of the secondary path channels, and requires neither
any dither signals nor the PE property of the source signals
for the identifiability.
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Fig. 1. Structure of equivalent multichannel ANC system
2. MULTICHANNEL SOUND CONTROL PROBLEM

An equivalent structure of multi-channel feedforward sound
control systems is depicted by Fig.1. In ANC case, the signal
r(k) € RN detected by N, reference microphones are the
inputs to the IV, x N, adaptive feedforward controller matrix

C(z, k), where N, is the number of the secondary loudspeak-
ers which produce artificial control sounds u(k) € R™e to
cancel the primary source noises at the N, objective points.
The canceling errors are detected as e(k) € RV by the N,
error microphones, which are expressed in terms of the acces-
sible signals (k) and w(k), as

e(k) = H(z)r(k) — G(2)u(k) (D

where H (z) € ZNeXNr and G(2) € ZNe*Ne are the equiv-
alent primary and secondary path matrices respectively, which
are uncertain and changeable. Thus, in the ANC in Fig.1, we
cannot measure the signals d(k) and y (k) separately, but only
measure the canceling error e(k), since the model of G(z)
involves uncertainty. Thus, the multichannel ANC problem
is how to tune the inverse controller C(z) directly by using
only accessible signals r(k), u(k) and e(k), even if the sound
transmission matrices H (z) and G(z) are uncertain.

In sound reproduction (SR) systems, (k) € RN~ is the
recorded signal vector to be reproduced at the object points.
C(z) is an inverse controller matrix which determines the
control sound vector u(k) € RN emitted from the loud-
speakers. These sounds are transmitted via the listening room
space to reproduce the desired sounds y(k) at the locations
of listener’s ears, where IN,, = N, in SR case. The transmis-
sion paths from the N, loudspeaker to the N, microphones
are expressed by the channel matrix G(z). C(z) is deter-
mined so that the reproduced signals y(k) can be equal to the
delayed recorded signals d(k) = H (z)r(k), where H (z) =
diag [z=21,---, z7A~] and N, > N, [9]. Unlike the ANC
problem, H (z) is known and specified a priori. Thus the SR
problem is how to decide and update the sound reproduction
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controller C(z) directly, even if the sound transmission ma-
trix G(z) is uncertain.

Thus, the purpose of this paper is to give a new adaptive
algorithm to update the controller C(z) directly without ex-
plicit identification of the unknown channel matrices H (2)
and G(z) (G(z) only in SR case), unlike conventional ap-
proaches.

3. VIRTUAL ERROR METHOD

Primary Path
Channel
Reference d ( k )

Signal H (Z) Canceling
Error

r(k) L Adaptive Active e(k)

Noise Controller Secondary Path —
Channel

r(k) "(k)

C(z,k)

ADF #1'

+
ADF #2
| -
ADF #3
e, (k)

/
L R (2,0 O r(k) [ veeCz.b) (" |->O—>

ADF #2' X(k)/ ADF#l

G(2)

Fig. 2. Virtual error method for multichannel case

The proposed controller structure is illustrated in Fig.2.
Compared to a single channel case [10], the algorithm be-
comes complicated since the exchange of product of two ma-
trices gives a different result. We introduce two kinds of vir-
tual error vectors e4 (k) and e (k), which are forced to zero

by using three adaptive FIR matrix filters C/(z, k), K (z, k)
and b(z, k). The relations of the error vectors are given as

e(k) = H(z)r(k) — G(2)u(k) (2a)
ea(k) = e(k) + K(z, k)u(k) — D(z, k)r(k)  (2b)
ep(k) = D(z,k)r(k) — [vec[C(z, k)] X (k)]"  (2¢)

where
u(k) = C(z,k)r(k) 3)
X(k) = K (2,k) @ r(k) )

where vec[A] denotes a row vector expansion of a matrix A,
and ® denotes the Kronecker product, which are explained
later in two channel case.
Then we consider the sum of two virtual errors in Fig.2,
which is given from (2b) and (2¢) as
ealk) +es(k) = e(k) + K (= K)uk)
~veclC(z, KX (K)]"  (5)
We can show that the canceling error vector e(k) converges
to zero, if the coefficient parameters in the three adaptive FIR
filter matrices C(z, k), K(z, k) and D(z, k) can be updated
so that the error vectors e 4 (k) and e (k) may become zero,

and these filter parameters converge to any constant values.
To prove this property, we should show that

K (2, kyu(k) = [vec[C(z, k)| X (k)] (6)
in sufficiently large k. For the simplicity, the proof is done in
a case with V. = N, = 2. The left hand side of (6) is

K (z, k)u(k) = K(z,k)C(z, k)r(k)
[Ku(z) Kis(z )} {OHE z) Cua(2) Hrl(k) ]

Koi(2) Kaa(2) Co1(2) Caa(2) r2(k)

[ (K11(2)C11(2) + Kia(2)Car(2))r

(K21(2)C11(2) + K22(2)Ca1(2))
+(K11(2)Ch2(2) + Kia(2)Coa(2))ra (k) ] )
+(K21(2)Cra(2) + Koo (2) Caa(2)) 72 (k)

where k in the adaptive filter matrices is omitted for the sim-

plicity of notation.

On the other hand, the right hand side of (6) can be rewrit-
ten from (4) for sufficiently large k, as

1(k)
r1(k)
)

(2
(A
Cy

[Uec[é(fa k)}X(lf)]T = [Ufc[é(za kﬂKT(Z’v k) @ r(k)]"
=[[ Cu(z) Cia(z) Ca(z) Caa(2) ] ;
f:(n(z)?"l(ki) @21(2)7"1(16)
K1 (2)ra(k)  Kai(z)r2(k)
Kia(2)ri(k)  Kaa(z)ri(k)
Klg(z)’l"g(ki) KQQ(Z)’I"Q(]C)
_ [ (C11(2)K11(2) + Car(2)Kr2(2))ra (k)
(Cr1(2)Ka1 (2 2) + Ca1(2) K22(2))r1 ()
+(Cr2(2) K11 (2) + Caa(z ) K12(2))r2 (k) ®)

+(Cra(2)Ka1(2) + Caa(2) Koz (2))ra (k)
If the parameters in the all adaptive filters converge to any
constants, we can exchange the product of two polynomials
Ci;(z) and Ky (2) in (7) and (8), and then it follows that
(7) is equal to (8) in sufficiently large time. Then, it gives
from (5) that the convergence of e4 (k) and ep(k) to zero
assures the convergence of e(k) to zero. It is noticed that
the controller parameters do not need to true values but only
constants which make e 4 (k) and e (k) zero.

4. ADAPTIVE ALGORITHMS FOR ANC AND SR

We express the three adaptive matrix filters C(z, k), K (z, k)
and D(z, k) as

C
Cij(z k) = &P (k)" o+ éﬁf”’(k)z% (%)
Kz, k) =k (k)2 4+ éf,f;m’(k)z*Lﬁm (9b)
~ N Dv
Dz, k) = dig) (k)™ + -+ 6,70 ()75 (90)
wherei=1,--- ,N.,7=1,--- , N,andm=1,--- | N,.

4.1. Adaptive Algorithm for attenuation of e 4
It follows from Fig.2 that the first virtual error vector e 4 (k)
is expressed by

Nec N,
eA,m(k):ei(k)"f'ZK'rm Z, k Uz Z mj Z k TJ )
i=1 j=1

N. N,
= em(k) + D wh, (k)0 k mi(k) = > &5 (k)0 D mj(k)

i=1 j=1
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where m = 1, -+, Ne, Wi (k) = (ui(k — 1),~~~ ui(k —
LENT, Oxcmi (k) = (B (), - kSEmD (k)T €, (k) =
(rj(k = 1), ,rj(k — LE))" and Bp (k) = <d£i’1<k:>
4 ()T

»"'m,

Ther]1 from the minimization of the instantaneous squared
error norm ||e 4 (k)||? with respect to 0 ki (k) and 6 p ;i (k),
we can derive the adaptive algorithm for updating these pa-
rameters as follows:

Orcmi(k +1) = Oxcmi (k) = Y(K)wmi(K)eam (k) (102)
O0.mj(k+1) = O m; (k) + (k)€ (K)eam(k)  (10b)
2alea (k)]
y(k) = (10¢)
P+ TN €4 (0) (lwm (B2 + €, (R) )
where wm(k) = (Wzn(k’)’ T 7w£Nc(k‘))T’ €7n(k) = (Ef@l (k‘),
S, wlh v (k)T and 0 < o < 1, p > 0 is a small constant.

The algorithm (10) has a feature that the step size is not con-
stant but is adjusted by the error vector e 4 (k).

4.2. Adaptive Algorithm for attenuation of ep
On the other hand, the second virtual error is given by

enm(k Z (z,k)r;(k)
_[011(27 k)a ) ClNr(Z7 )a R éNcl(Z7 k)a ) éNcN7~(Z’ k)]
(w1 (K), - i, (k) @ (), T, (k)]
N,
D (2, k)r;(k)
j=1
(wﬁn( ), an (k), - 7m%Ncl(k)v"vm£LNch(k))
[én(k), o ein, (k) en, (B)]T
N,
= Dunj(z k)ri(k) — % (k)8 (k) (11
j=1
where &l (k) = (2mij(k—1),- -, @maj (k—L5))T, €35 (k)
R A(LU) _
= (& (h), - ¢ g O ) = @ () -
Z;LlNT(k)? : 'mN l(k)7 ’ mNN (k))’ Oc(k) =
(é?l(k)a to vc?NT(k)» e acjl;cl(k)v ) CTJ\}CN,,.(k))T-
Thus, the second virtual error vectors are expressed by
es(k) = D(z, k)r(k) — 8% (k)0c (k) (12)
where
‘P%J(k)
‘PX,2(k)
P (k) = .

90§,N6(k)

Then, we can give the adaptive algorithm for updating the
parameters in C(z, k) as follows:

= 0c(k) +7.(k)®x (k)ep(k)
20c|les (k)|
pe+ || ®x (ke (k)|

Oc(k+1)

’)/c(k) -

(13a)

(13b)

where 0 < . < 0, and p > 0 is a small constant.

Then by updating the old parameters of 8 (k) and 0 i (k)
in ADF#1° and ADF#2’ in Fig.2 by the new adjusted parame-
ters in (10) and (13), we can generate the control inputs u (k)
and the auxiliary signals X (k).

5. SIMULATION RESULTS

. Multichannel Active Noise Control

WMWWWW
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Fig. 3. Comparison of control results between the filtered-x
algorithm and the proposed fully direct adaptive algorithm

The effectiveness of the proposed direct adaptive algo-
rithm is examined in two channel ANC in a room. The setup
is same as used in our previous experimental study [6], in
which N, = N, = N, = 2. In the simulation we used
the path models which were obtained experimentally. Let the
sampling interval be 1 ms. We consider two typed of the pri-
mary source noises: One is random noise in low frequency
range from 50 Hz to 400 Hz, or the other is periodic signals
with unknown frequencies which do not satisfy the PE condi-
tion. The length of all the adaptive filters are chosen as L. =
Ly=Li="70,and @ = o, = 0.9(< 1), p = p. = 0.01.

First we consider a scenario in which the location of the
two error microphones is moved by 34 cm instantaneously
from the original positions to the primary sources by using
the switches at 20 s after the start of control, and the location
is again moved by 68cm to the control loudspeakers from the
sources at 40 s. Figs.3(a) and 3(b) show the canceling er-
rors eq (k) and e (k) in a case without control. As shown in
Figs.3(c) and 3(d), the filtered-x type of algorithm could not
keep stable attenuation performance [6] at the first switched
time, since it cannot adapt to uncertain changes of the sec-
ondary paths. On the other hand, the proposed method could
still attain the stable control performance even if the channels
changed rapidly as given in Figs.3(e) and 3(f).

Next, Figs. 4(a) to 4(f) show the control results in a case
when the two primary source noises are periodic and consist
of sinusoid with unknown frequencies 150 Hz and 250 Hz
respectively in the time interval (0s, 20s), and both 400 Hz
in the interval (40s, 60s). The primary noises in the inter-
val (20s,40s) are the outputs of lowpass filters with passband
(50Hz, 400Hz) for white noise inputs. Even when the pri-
mary source noises like sinusoids have no PE property, the
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Fig. 4. Control results for source signals without PE property

proposed algorithm can give very nice canceling performance
still in the interval (0s, 20s). During the interval, the adaptive
algorithm updates only few number of parameters required
for reducing the canceling errors. During the interval (20s,
40s), the primary source noises have sufficient PE property
and then almost all of the parameters of the adaptive filters
are updated and converge to their true values (for instance, the
profiles of parameters converging to their true values are given
by the dotted lines in Figs .4(e) and 4(f)). During the inter-
val (40s, 60s) the primary source noises are sinusoids again,
however, since the adjustment of almost all adaptive param-
eters has been completed, then no parameters are required to
be updated. Thus, the proposed direct adaptive scheme is also
very robust to the insufficiency of the PE property of the pri-
mary source noises, while the conventional indirect adaptive
approaches need dither noises for attaining the identifiability
of the secondary paths.

5.2. Two Channel Sound Reproducrion

We applied the proposed approach to direct tuning of the in-
verse controller for stereophonic SR system with N, = 3 and
N, = N, = 2. Experimentally obtained impulse responses
were used to describe the room transmission path dynamics,
which are uncertain in the simulation. Since H (z) is speci-
fied a priori, the corresponding adaptive filter matrix ﬁ(z, k)
can be replaced by H(z). Then only K(z,k) and C(z, k)
are to be updated. In this simulation, the inverse controller
was directly tuned by using white noise as (k) for first 10
seconds and then by using the stereophonic signals as r(k).
Fig.5 shows the sound reproduction results, where the sam-
pling frequnecy is 32kHz, and the numbers of taps of K (z, k)

and C(z, k) are 350 and 605. As shown in Figs. 5(c) and
5(d), after 10s the two music signals are almost perfectly re-
constructed. One of the advantages of the proposed method
is that the inverse controller parameters can be directly tuned,
without using the ordinary filtered-x algorithms. Fig.6 shows
some examples ofthe frequency response of the tuned con-

troller C(z, k), and they are very flat over the wide range
adaptively, while the flat characteristics cannot be easily ob-
tained by the conventional methods [11].
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08 10 20 30 % 10 20 30
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(a) Recorded signal d1 (k). (b) Recorded signal d2 (k).
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Fig. 5. Sound reproduction results.
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Fig. 6. Examples of frequency response of C'(z).
6. CONCLUSION

We have presented the new direct adaptive algorithm for tun-
ing the feedforward inverse controller in multichannel cases,
which is effective even when the all path matrices are uncer-
tain. The proposed algorithm does not need explicit identifi-
cation of the uncertain secondary paths and is different from
the ordinary filtered-x algorithms.
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