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ABSTRACT

This paper introduces a new transform domain variable
step-size LMS algorithm, in order to deal with highly
correlated inputs. In the algorithm the step-size rule
is based on the weighting coefficients bias to variance
trade-off. Performance of this method is promising,
especially in nonstationary environment with abrupt
change of unknown system. Computer simulation re-
sults are provided to support the proposed implementa-
tion of the new TDVSS LMS.

1 Introduction

The least mean square (LMS) algorithm [1, 2, 3] is one of
the most popular algorithms in adaptive signal process-
ing. Due to its simplicity and robustness this algorithm
has been the focus of much study, leading to its imple-
mentation in many applications. Many different modi-
fications were proposed to improve performance of the
LMS, and a large number of results on its steady state
misadjustments and its tracking ability has been ob-
tained [1, 2, 3].

Unfortunately, its convergence rate is highly depen-
dent on the conditioning of autocorrelation matrix of
its inputs. When inputs are highly correlated, conver-
gence rate degrades radically. In order to cope with this
problem, transform domain algorithms have been devel-
oped (TDLMS)[4, 5]. In the case of the TDLMS, the
input signal is transformed by the use of an orthogonal
transform and the filter coefficients are updated inde-
pendently.

Variable step-size LMS (VSS LMS) algorithms are ap-
plied [6], with the intention of decreasing misadjustment
and to maximize convergence rate, . To design an appro-
priate variable step-size method, one should intuitively
use a larger step-size when the estimate is far from the
optimum and a smaller step-size as it approaches the
optimum.

In this paper, we will combine the transform domain
technique with a new variable step-size LMS (NVSS
LMS) algorithm, that is based on the weighting coef-
ficients bias/variance trade-off [7, 8].

In Section 2, we explain basic characteristics of exist-
ing transform domain LMS algorithms, that we used to
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Figure 1: Block diagram of system identification using
the transform domain adaptive filtering.

evaluate our results. Analytical form of our approach
to transform domain variable step-size LMS algorithm
is presented in Section 3. Then we demonstrate perfor-
mances of the proposed approach by using the appro-
priate simulations.

2 TDLMS Adaptive Filters With Variable
Step-Size

The transform domain concept will be presented by us-
ing the adaptive system identification problem. The
block diagram is shown in figure 1, where the block de-
noted by T}, represents the transform matrices applied to
the block of the input signal X;,, (k). In literature, many
different transformations are proposed: the discrete co-
sine transform (DCT), discrete Fourier transform (DFT)
or the Harley transform (DHT). Here we used the DCT.
X (k) is the transformed signal, v(k) is output noise, d(k)
and e(k) are reference signal and the error signal, respec-
tively. The output signals of the adaptive filter and the
unknown system are §(k) and y(k), respectively. These
signals are computed by:

y(k) = Wo, (k)X(k),  9(k) = W (k)X (k), 0
d(k) = y(k) +v(k), (2)
e(k) = d(k) = g(k), (3)
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Updating of each TDLMS adaptive filter coefficient is

described by:

B e(k)a(k—i),  (4)

. 1) =W
Wil +1) = Wilh) + —

where W; is the ith coefficient of the adaptive filter,

o?(k) is the power estimate of the ith transform coef-

ficient z;(k), and € is a small constant that eliminates
the overflow when the values of o2(k) are small [4]. The

value of o?(k) is usually computed by:

o2 (k) = Boi(k — 1) + (1 - B) [zs(k))>, (5

where 0 € [0,1] is forgetting factor.

Although many different algorithms deal with vari-
able u, we have decided to compare our algorithm with
DCT-LMS [5] and TDVSS, because those algorithms
have shown best performance so far [6].

In DCT-LMS [5], the following relations are used:

Wik + 1) = Wi(k) + pi(k)e(k)x(k — 1), (6)

ik +1) = Bpi(k) + (1 - 9) ( IR )7’)
M M v

where X;(k) = [z;(k),z;(k — 1), ...,2;(k — M + 1)]T
the vector of the past M values of the ith transform
coefficient, and 8 € [0,1],7 € [0,1] and 0 < € < 1 are
some constant parameters.

As for TDVSS [6], the step-size is obtained from:

k
o Y 2
AW =aut+ 2 Y e )
i=k—L+1
if k=nlL,and
Alk), ! )
( ) A(k) € (/’Lminaumaw)
wk+1) =< fimaz, ifk=nL,and A(k) > tmaz

Hmin, if k= nLv and A(k) < Hmin (9)
w(k), ifk#nL

where n = 1,2,3, ..., and fmin, fmaer are the minimal
and maximal values of step-size, respectively.
p(k)
(k+1) = —=— 10
:ul( + ) 6+U,L-2(]€)7 ( )

The weighting coefficients of TDVSS are computed by
using relation (6). This algorithm has outstanding per-
formance, high convergence rate and comparable com-
plexity, although with many adjustable parameters [6].

3 New TDVSS LMS Adaptive Algorithm

In order to derive our VSS LMS algorithm, let us apply
the presented combining method to two standard LMS
adaptive algorithms with different step sizes. Let the

first one have the maximal step size value pi,,q, Which
does not violate the algorithm convergence condition [1,
3], while the second one is characterized in each iteration
by the variable step size p;(k).

The analysis from [7, 8] may now be applied to these
two algorithms. After choosing the better algorithm,
based on the proposed criterion [7, 8], both algorithms
will, in each iteration, take the set of better values of
the weighting coefficients as a starting point for the next
iteration.

Thus, according to [1, 2, 3], denote the ith weighting
coefficient at an instant k by W/ (k), W/ (k), for the first
and the second LMS algorithm, respectively. Weighting
coeflicients for these algorithms would be calculated, in
each iteration, according to the relations

WE(k+1) =Wy + 2pmaze(k)x(k — i), (11)

WAk +1) = Wy + 2um(k)e(k)z(k — i),  (12)

where W, is the coefficient value selected as the best
choice from the previous iteration.

As the criterion for choosing better weighting coeffi-
cient and the step-size value, at an instant k+ 1, we get
the inequality:

k) (/Tomaz — /i (k)) < on, (13)

where a;(k) = |e(k)x(k — i)| represents half of the esti-
mated ¢th coordinate of the performance criterion gra-
dient for the LMS algorithm, [7, 8, 10].

The best bias-to-variance ratio is obtained for the
particular step-size that turns (13) into an equality,
[7, 8, 10]. By solving the inequality (13), we arrive at
the relation for the step size calculation for the i — th
weighting coefficient in the k — th iteration:

— k+1)o,
/Lz(k’) = Hmaz — (Za;()/i) ’:ul(k) > Mmin -
V Hmin s Hi(k) < fmin (14)

It may be shown that for practical applications of (14)
one may use:

[ - e >
v Hmin 7ai(k) S

(k+1)os,
where C = POV T T B
Analysis of (15) leads to the idea of avoiding advance

calculation of the weighting coefficients, i.e. the parallel
LMS algorithms. Instead, based on the calculation of
the parameter a;(k) and taking into account (15), we
determine the value p;(k), i.e. a more appropriate step
size of the LMS algorithm for each weighting coefficient
at each instant of time. Obviously, this is just the idea
of a VSS LMS algorithm, [7].

Note that the only unknown value in (15) is the noise
variance 2. It should either be apriori known or es-
timated at the beginning of the adaptation procedure

C
¢ (s)
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if the input noise is stationary. In our simulations we
have estimated the value of o2 by the weighting coeffi-
cient variance o7, where it is obtained by, [1, 3, 7, 8, 10]:

_ median(|W;(k) — W;(k —1)|)
7= 0.6745v/2 S

for £ = 1,2,..,L. The above relation produces good
estimates for all stationary cases, as well as for the in-
dicated nonstationary ones, including abrupt coefficient
changes.

Note that any other estimation of o2 is valid for the
algorithm. Namely, although it somewhat affects the
precision of step size choice, this error does not sig-
nificantly affect the overall algorithm performance, as
shown in [11].

Adjustable step-size (15) and the relation for updat-
ing weighting coefficients:

Wik +1) = Wi(k) + &kle(k)x(k —1),
€toi (17)

completes new TDVSS (NTDVSS) adaptive algorithm.

4 Simulation Results

For these simulations the input signal was
3) — 041z, (k — 4) + 2(k),

where z(k) is white Gaussian random signal with zero
mean and variance o2 =0.14817. In the presented simu-
lations, the reference signal d(k) is also corrupted white
Gaussian random noise v(k) with zero mean and vari-
ance 02 =0.0001. The eigenvalue spread ratio of the
input signal is 944.67. The signal to noise ratio at the
output of the unknown system was 50 dB. The new algo-
rithm is compared with the DCT-LMS and TDVSS [5, 6]
algorithms. In order to make the algorithms compari-
son more transparent, unknown system is the same as
in [6]. Presented results were obtained by averaging 250
Monte-Carlo simulations of the algorithms. The values
of parameters for DCT-LMS, TDVSS (recommended in
[6]) and NTDVSS algorithm are given in Table 1.

In Figure 2 we can see the MSE behavior of all three
algorithms for time-invariante unknown system. As it
can be seen form figure 1, TDVSS and NTDVSS have
similar performance, but better than DCT-LMS.

Performance of considered algorithms in nonstation-
ary environment with abrupt change of unknown sys-
tem is presented on figure 3. Abrupt change is made
by multiplying impulse response coefficients of unknown
system with —1 at the middle of iteration process. As
it may be observed, after abrupt change, new TDVSS
LMS algorithm has better MSE speed of convergence
than DCT-LMS and TDVSS. The reason for that is
more adaptive step-size behavior of new TDVSS LMS
algorithm.
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Figure 2: Comparison of MSE for considered algorithms.
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NTDVSS
Hmaz = 0.1 Hmin = Mmaw/lo k=18

Table 1: Parameters of the compared algorithms
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Figure 3: Comparison of MSE for considered algorithms,
with abrupt change of unknown system.
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5 Conclusion

A new transform domain variable step-size LMS al-
gorithm is introduced here. Using transform domain
concept and appropriate step-size adjustment, we have
shown that this algorithm can successfully deal with
highly correlated inputs, without considerable increase
in the computational complexity. Also, this algorithm
has less adjustable parameters than the compared algo-
rithms. Due to more adaptive step-size behavior of our
method, the proposed algorithm has improved conver-
gence rate after abrupt change of unknown system.
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