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ABSTRACT 
Voice recordings are the only basis for pathology detection and 
classification in critical cases where invasive instrumentation is 
not possible as in new-borns and long-distance screening, among 
others. Classical pathology detection methods using voice rely on 
processing basic information from the voice signal, as the pitch, 
jitter, shimmer, HNR and others similar. In the present work a new 
method to estimate HNR from the detection and processing of a 
signal correlate of the mucosal wave is presented, as it is well 
known that mucosal wave alterations give clues to the presence of 
certain pathologies. An evaluation of mucosal wave in recordings 
from normal and pathological cases is presented and discussed, 
checking the results against those produced from simulated voice 
by a 2-mass model. 

1. INTRODUCTION 

Through the present work the precise reconstruction of a mucosal 
wave correlate from voice using inverse filtering of real and simu-
lated traces is presented. This signal is of most importance in es-
tablishing the presence of certain pathologies in the vocal folds 
[8]. In what follows the term mucosal wave will refer to the travel-
ling wave effect taking place in the vocal cords due to the distribu-
tion of masses on the body cover and related tissues, and the term 
mucosal wave correlate (MWC) will be used for the influence of 
mucosal wave on the overall pattern of the glottal aperture, ap-
pearing as a superimposed ringing on its reconstructed trace. The 
MWC may be seen as a higher order vibration regime of the vocal 
folds, once the average main movement or first regime has been 
removed. To start the study a version of the vocal cord 2-mass 
model as given in [7] and [4] has been implemented in 
MATLAB® [5], its main features being: 2-mass asymmetric mod-
elling, non-linear coupling between mass movement and glottal 
aperture, cord collision effects, non-linearities and deffective clo-
sure effects taken into account, lung flux excitation and vocal tract 
coupling. The parameters of the model are the lumped masses (2 
per cord) M1l and M2l (left cord), M1r and M2r (right cord), the 
elastic parameters K1l and K2l (relative to reference) and K12l (in-
tercoupling), and their respective ones for the right cord: K1r, K2r 
and K12r. The dynamic equations of the model are a set of four 
integro-differential equations, one for each of the masses in the 
system, with the following structure: 
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where i∈{1,2} determines the subglottal (1) or the supraglottal (2) 
cords and j∈{l,r} distinguishes left from right cords, fxi,j is the 
force acting on the cord in the direction of the axis x (transversal) 
resulting from the action of the pressure difference between the 
subglottal and supraglottal regions pi-p0 (the excitation), and vi,j is 
the corresponding mass speed along the axis x (the response). The 
effective glottal aperture resulting from the position of the sub-
glottal and supraglottal ridges (known also as lower and upper 

lips), will establish the flux of air induced in the vocal tract, and 
has been defined as: 
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where L is the equivalent length of the vocal cords, ρ is the den-
sity of air and c is the speed of sound. The movement of the vocal 
cords, will be described by the glottal aperture and its derivative 
(cord relative speed). 

2. MODELLING CORD MOVEMENT 

Adopting standard values [7] for the parameters in the model the 
resulting glottal aperture may be seen in Figure 1. Due to the 
difference between the values of M1r,l and M2r,l the subglottal 
masses will move more inertially, describing a pattern approach-
ing a rectified sinusoid. On its turn the supraglottal masses will 
describe a more complicated pattern of movement due to interac-
tions against the reference and the massive subglottal masses [2]. 

 
Figure 1. Simulated glottal aperture under normal conditions. 

 
Figure 2. Top: Glottal aperture for modeled cord stiffness. Mid-

dle: Derivative of the glottal aperture. 

The glottal aperture may be seen as the aggregation of the two 
vibration orders: the slow and long range component (SLRC) due 
mainly to subglottal masses, and the fast and small range compo-
nent (FSRC), which reflects supraglottal mass movement appear-
ing as the over-ringing on the signal in Figure 1. This is most 
plausibly associated with the mucosal wave, as its presence is due 
to the coupling between lower and upper masses, otherwise the 
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whole cord would act as a single mass. Although this is a simplifi-
cation of more elaborated models [9], it reproduces the vibration 
features of interest for the present study. To illustrate this the glot-
tal aperture produced by the 2-mass model when the sub-
supraglottal stiffness parameters K12l,r have been substantially 
increased is given in Figure 2. It may be seen that the FSRC ap-
parently vanishes out. An ideal study of this behavior from a sim-
ple 1-mass system is given in Figure 3.  
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Figure 3. First vibration mode of the vocal cords. Top: Glottal 

aperture. Bottom: Right cord speed (unidimensional). 

The vibration cycle starts at instant 1, when both cords initiate a 
fast separation. At instant 2 the right and left cords have arrived to 
their maximum span where the speed of the cords becomes zero. 
From this point on, the elastic forces restore the cords to their 
resting position, where at instant 3 both cords collide and bounce 
to separate again with opposite velocities (instant 4). The intensity 
of the collision (the slope from 3 to 4) is of special importance to 
measure overstress in phonation. 

3. ESTIMATING THE GLOTTAL APERTURE 

The reconstruction of the MWC from the voice trace is based in 
inverting ([4], [3], [1]) the well-known voice production model 
given in for instance in [4], pp. 193. The voice trace s may be seen 
as the output of a generation model Fg(z) excited by a train of 
delta pulses, its output being modelled by the vocal tract transfer 
function Fv(z) to yield voice at the lips sl which is radiated as s, 
where r=ζ-1{R(z)} is the radiation model and fg and fv are the glot-
tal and vocal tract impulse responses: 

rlsrvfgfrvfgfs **}*{*}*}*{{ === δ  (3) 

This model will be inverted to reconstruct the glottal aperture 
u=δ*fg from the voice trace s by removing the radiation effects to 
get the radiation-compensated voice sl. A first estimation of the 
Inverse Glottal Impulse Response hg may be used to reconstruct 
the de-glottalized voice sv, from which a first estimation of the 
Inverse Vocal Tract Impulse Response hv0 may be derived, which 
may be used to remove the influence of the vocal tract from the 
radiation-compensated voice sl by direct convolution producing a 
first estimation of the glottal pulse u0 as summarized in Figure 4. 
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Figure 4. Estimation of the glottal pulse u0 by a coupled model 

inverter and convolver. 

From u0 a new Inverse Glottal Impulse Response hg1 may be pro-
duced to remove the glottal pulse influence from the radiation-
compensated voice sl1, producing a more accurate estimation of 
the de-glottalized voice sv1, and this on its turn may be inverted to 
remove vocal tract influence from the radiation compensated 
voice and re-estimate the glottal pulse u1, and so on. Through 

recursion good estimates of both the glottal pulse at iteration step 
i, ui and its integral ugi (glottal aperture) may be obtained. The 
basics and algorithmic details of this procedure are given in [6].  

 
Figure 5. Normal voice. Top: Input voice. Middle: Differential 

glottal aperture. Bottom: Glottal aperture. 

The described procedure has been applied to a trace of non-
pathological voice corresponding to the vowel /a/, of which a 
segment of 0.05 sec. of duration is shown in Figure 5. 

4. ESTIMATING THE MWC 

To remove the SLRC and produce an estimate of the MWC several 
techniques were used, as mean-, low pass- and cepstral filtering 
[6], showing good results when the glottal aperture minima 
(glitches) are not too sharp, otherwise the residual component of 
the SLRC near the minima is large and it distorts the pattern of the 
MWC estimate. The technique proposed to solve this problem is 
based on a period-by-period subtraction of the slow-moving base-
line on which the minima of the glottal aperture relies, and on 
DFT low-pass filtering. The first process is explained in Figure 6. 

 
Figure 6. Levelling method used for glottal aperture. 

The method is based in estimating the slope joining two succes-
sive minima in the glottal aperture (ugmin,k-1 and ugmin,k) and the 
corresponding increment ∆ug,n at time instant n which should be 
subtracted from the glottal aperture: 
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where wk is the k-th period window. The signal ugu,n could be seen 
as half the excursion that one of the vocal cords would describe if 
vibrating freely (no opposite cord). By subtracting the minima of 
(4) and reversing the sign of each alternate period-window wk (6) 
the unfolded glottal aperture will be obtained (see Figure 7). 
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Figure 7. Unfolded glottal aperture ugu,n. 

This signal can be now low-pass filtered using spectral truncation 
in the frequency domain by means of the DFT: 
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where Wlp(m) is a low-pass window in the frequency domain and 
Nk is the size of the k-th period window. The low-frequency trace 
ugl,n is obtained by inverse DFT and rectification (8), and the high-
frequency trace ugh,n by subtraction (9), the results being shown in 
Figure 8. Their corresponding power spectra are given in Figure 9.  

 
Figure 8. Results for normal voice from recordings. Top: Lev-
elled signal ugf,n. Middle: Low-pass filtered glottal aperture ugl,n 

(SLRC). Bottom: High-pass filtered glottal aperture ugh,n (FSRC). 

 
Figure 9. Spectral contents of traces in Figure 8. 

The results of estimating the glottal aperture for cord-stiff patho-
logical voice (/a/) are given in Figure 10, and the corresponding 
ones for levelling, low-pass filtering and subtraction are shown in 
Figure 11. It may be seen from the bottom template that the 
amount of FSRC seems to be smaller for this case than for normal 
voice (Figure 8, bottom). 

 
Figure 10. Pathological voice from recordings: Top: Input voice. 
Middle: Differential glottal aperture. Bottom: Glottal aperture. 

 
Figure 11. Results for pathological voice from recordings: Top: 
Levelled glottal aperture. Middle: Low-pass filtered correlate of 

the SLRC. Bottom: High-pass filtered correlate of the FSRC. 

5. RESULTS AND DISCUSSION 

In Figure 12 a comparison between the results from normal vs 
pathological voice is given, using the power ratio (HNR) between 
the FSRC and SLRC: 
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where wk is the k-th period-adjusted window used in the evalua-
tion of rpk, ugb is the levelled glottal aperture, and ugl is the SLRC. 

 
Figure 12. HNR Ratio: normal vs. stiff-pathol. voice (recordings). 
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The difference in the HNR measured from normal and stiff-cord 
voice is due to the different amount of MWC present in both cases. 
To check this hypotesis a new set of traces was produced from the 
vocal cord model with the following settings for normal voice: 
Ml,r1=0.2 g, Ml,r2=0.02 g, Kl,r1=40,000 dyn/cm, Kl,r2=100,000 
dyn/cm, Kl,r12=30,000 dyn/cm, and the same parameter values for 
pathological voice with the exception: Ml,r2=0 g. Normal voice 
traces from simulations are given in Figure 13. 

 
Figure 13. Traces from simulations (normal case): Top: Levelled 
signal. Middle: Low-pass filtered correlate: SLRC. Bottom: High-

pass filtered correlate: FSRC. 

 
Figure 14. Traces from simulations (stiff-pathological case): Top: 

Levelled aperture. Middle: Low-pass filtered correlate: SLRC. 
Bottom: High-pass filtered correlate: FSRC. 

In Figure 14 the results for pathological simulated voice may be 
seen. The top template is similar to the glottal aperture in Figure 
2, whereas the middle one is the low-frequency component of the 
glottal aperture, and the bottom one is the estimation of the MWC, 
which also resembles the one in Figure 11. The results for patho-
logical simulated voice show the presence of MWC due to the 
non-linear effects in the model: the clipping in cord excursion, the 
interaction between cord position and glottal pressure difference, 
and the bouncing of one cord against the other. These non-
linearities transfer energy from low to high frequencies which 
appear as a superimposed vibration on the glottal aperture. The 
plot in Figure 15 establishes a comparison among the behavior of 
the traces used in the study (normal vs pathological, recorded vs 
simulated), showing the dispersion of the HNR (rp) for the estima-
tion windows considered. It may be concluded that the ratio rp for 
normal voice is larger than for pathological voice. The results for 
normal voice from actual recordings and from simulations com-
pare within the same ranges. As simulation results may be ad-
justed using the model settings, a hint on which parameters may 
be associated with normal and pathological voice may be obtained 
through model parameter adaptation: i.e., the comparison between 

average levels could give an estimation of the possible degree of 
cord stiffness in a real case under exploration. 

 
Figure 15. Power ratio between FSRC and SRLC for normal and 
pathological voice from recordings (rec.) and simulations (mod.). 

Results from simulated pathological voice show lower values on 
the average than recorded pathological, this fact being predictable, 
as the stiffness induced was the maximum possible, in contrast 
with pathological recordings. But the most interesting result is that 
the confidence intervals for pathological and non-pathological 
traces do not overlap, showing considerable separation intervals, 
concluding that this parameter (HNR between SLRC and FSRC) 
could be a good correlate for cord stiffness pathology detection. 
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