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ABSTRACT 

Transforms that maps integers to integers have advantages 
not available for floating point transforms. Integer 
computations are faster and free from round off errors 
(integer transforms are widely used for lossless coding). The 
paper presents an algorithm of Integer Fast Fourier 
Transform (intFFT) based on lifting factorization. Integer 
Discrete Cosine Transform (intDCT) is also computed as an 
example of intFFT application. 

1. INTRODUCTION 

Great interest in the topic of integer transforms can be 
observed in literature during last few years. Most of data 
processed in computers come from sampling of continuous 
systems and thus poses integer values (with range bounded 
by A/D converter). For those integer data integer tools 
seems to be natural. Two significant advances of integer 
transforms are: no rounding of errors during computations 
and faster computations. Integer transforms are widely used 
for lossless transform coding (especially for biomedical 
signals). The breakthrough in integer transforms designing 
was lifting introduced by I. Daubechies and W. Sweldens 
[1]. In the paper lifting scheme is used for computations of 
Integer Fast Fourier Transform (intFFT). Factorization of 
complex multiplications is based on the method presented in 
[2]. In contrary to [2] presented intFFT is based on 
simplified butterfly computations with division in time (one 
and not two complex multiplications). Presented intFFT 
algorithm is based on lifting 'do' 'undo' methodology. An 
example of Integer Discrete Cosine Transform is given as 
possible use of intFFT. 

2. FORWARD AND INVERSE INTFFT 

Lifting structure is presented in Fig.1. The signal in upper 
(lower) branch is modified by functions fn and the signal 
from the opposite branch. Regardless of function fn the 
lifting is always revertible. Inverse transform is simple 
undoing steps from the forward transform. If the input signal 
is integer valued and functions fn return integers the overall 
transform maps integers to integers and the reconstruction 
error is exactly equal to zero. 

Discrete Fourier Transform of a discrete signal )(nx , 

10,0)( −><= Nnandnfornx is defined as: 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Lifting scheme, f1, f2 ... - arbitrary functions. 
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Equation (1) represents multiplication and addition of two 

complex numbers and the absolute value of kn
NW  equals 1. In 

paper [2] lifting factorization for complex multiplication is 
proposed. The lifting scheme for complex multiplication in 
case of integer valued computations is presented in Fig.2. Z 

stands for analyzed (input) complex signal, kn
NW  value is 

determined by vertical branches in the structure. In case of 
kn

NW  angle equals to ππ ,2/,0 ± factorization is not necessary 
and Z is multiplied by +/-1 or +/-j. Steps from Fig.2a,b can be 

easily undo which results in integer division by kn
NW  (or 

multiplication by conjugate kn
NW ) without rounding off 

errors. 
Implementation of intFFT is based on lifting 'do' 'undo' 
property in three levels: 1) complex multiplication by twiddle 
factor WN in the way that multiplication by conjugate twiddle 
factor returned original value, 2) butterfly structure that 
allows computation in inverse (or synthesis) butterfly see 
Fig.1, and 3) computing intIFFT by undoing steps from 
intFFT. 
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Figure 2: Lifting factorization of complex multiplication Z 
and WN

kn[2]. Q stands for quantization (in implementation 

nearest integer value), )cos(ϕ=c , )sin(ϕ=s , ϕjkn
N eW = . 

 
From conditions 2 and 3 it follows that intFFT cannot be 
used for computing intIFFT. 
The following intFFT is an algorithm with division is time. 
The base butterfly analysis and synthesis equations are: 
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Synthesis: 
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Presented synthesis equation (3) is simply undoing steps 
from analysis stage (2). Complex multiplications are 
computed in lifting schemes presented in Fig.2. Equations 
(2)(3) in form of graph are depicted in Fig.3. Those 
butterfly computation need only one (and not two like in 
[2]) complex multiplication. Its worth to mention that not 
every butterfly can by used for intFFT in proposed 
algorithm. Twiddle factor cannot be associated with 
diagonal branch, because in that case undoing steps from 
analysis is impossible. Full flow chart of intFFT and 
intIFFT for N=4 is presented in Fig.4. 
In case of intIFFT division by 2 in equation (3) cannot be 
done in intFFT (2), because lossless reconstruction would 
be lost. As a result Fourier coefficients can get high values. 
For example Fourier coefficients for signal with 12 bit 
dynamics and length N = 1024 may need 22 bits (in case of 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: Flow chart of butterfly computations. Circles 

denote that results of r
Nm WqX )(  and *r

NWT  are integers  
(see Fig.2). 
 
DC signal of maximum range).  
Presented intFFT ensures perfect reconstruction 
(reconstruction error is zero) and can be computed faster 
then FFT (with very similar results). Those advantages 
were achieved by the cost of linearity and energy 
preservation. intFFT is not linear and condition:  
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is not fulfilled. 

3. COMPUTING INTEGER DISCRETE COSINE 
TRANSFORM BY INTFFT 

Traditional FFT is probably the most popular tool in signal 
processing applications. As stated above intFFT gives 
results very similar to FFT and thus can be applied for signal 
analysis. In [2] intFFT was used for convolution purposes.  
The following algorithm is implementation of non scaled 
intDCT by intFFT. Non scaled DCT is defined as: 
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Presented algorithm allows computing intDCT of arbitrary 
length and ensures perfect reconstruction (without rounding 
off errors). For simplification real valued input signal is 
analyzed (which is the most common case, as DCT is used 
mainly for image compression).  
Well-known algorithm of computing DCT by FFT had to 
be modified to ensure lossless reconstruction of intDCT. 
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Figure 4: Full flow chart of intFFT and intIFFT for N=4, xo - signal with bit reverse order. Symmetry between analysis and 
synthesis is clearly seen. During synthesis steps from analysis are undone 
 
The modification concern reversible multiplications and 
'do' 'undo' methodology. An overview of integer DCT 
methods can be found in [3]. 
 
Algorithm 1 - intDCT (based on intFFT) for real valued 
integer signal  

....3,2,1,2;1,..,0),( ==−= lNNnnx l  

1. Prepare analyzed signal  

12/,...,0),12()1(~),2()(~ −=+=−−= NnnxnNxnxnx  

2. Compute intFFT 

{ })(~intFFT)(
~
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3. Prepare vector E(k) and apply lifting based 
multiplication (see Fig. 2) 
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Algorithm 2: - intIDCT (undo steps from forward 
transform) 

4. Compose 1,...,0),(
~ −= NkkX  vector  
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~ −⋅−−=− NXjNXNX  

3. Prepare vector E(k) and apply lifting based division 
(see Fig. 2) 
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2. Compute intIFFT 

{ })(
~

intIFFT)(~ nXkx =  

1. Compose analyzed signal )(nx  

12/,...,0),1(~)12(),(~)2( −=−−=+= NnnNxnxnxnx  

4. EXAMPLE AND CONCLUSIONS 

An example of computing intFFT and intDCT is presented 
in Fig.5. Test signal was generated in Matlab environment 
and consists of two sine waves with normally distributed 
pseudorandom noise. For analysis 1024 samples was taken 
with 16 bits precision. Fig.5a,b shows FFT and DCT 
(floating point counterparts) of this signal. Fig.5c,d 
presents intFFT and intDCT for the same signal and the 
difference between floating point and integer transform are 
depicted in Fig.5e,f. Similarity of integer transforms to 
FFT and DCT depends on quantization precision and 
nature of the signal. Reconstruction error for all four 
transforms is shown in Fig.5g,h. Integer transforms have 
nice feature of lossless reconstruction and are very close 
estimations of floating point transform. Additionally 
integer transforms can be implemented with integer 
arithmetic [3] which speed up algorithm and reduce power 
consumption (important feature for mobile applications). 
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intFFT vs. FFT intDCT vs. DCT 

  

  

  

  
 
Figure 4: An example of computing intFFT and intDCT and comparison with floating point counterparts FFT and DCT. Left 
column shows Fourier transform and right column shows cosine transform. Analyzed signal contains 1024 samples with 16 
bit precision. Plots shows: a,b - FFT, DCT; c,d - intFFT, intDCT; e,f - the difference between plots a,c and b,d; g,h 
reconstruction error. 
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