
Echo Cancellation Using a Variable Step-Size NLMS Algorithm

Ahmed I. Sulyman
Electrical and Computer Engineering Department

Queen’s University

Kingston, ON K7L 3N6 Canada.

E-mail:aisulyman@yahoo.com

Azzedine Zerguine
Electrical Engineering Department

King Fahd University of Petroleum & Minerals

KFUPM, Dhahran 31261, Saudi Arabia.

E-mail:azzedine@kfupm.edu.sa

Abstract
In this work, an echo cancellation scheme using

a variable step-size Normalized Least Mean-Square
(VSS-NLMS) adaptive algorithm is proposed. This
work shows that the use of the VSS-NLMS algorithm
will eliminate much of the trade-off between residual
error and speed of convergence existing with the fixed
step-size NLMS algorithm and therefore resulting in
an improved performance.

1 Introduction

Because of its simplicity, the Least Mean Square
(LMS) algorithm [1] is the most popular adaptive al-
gorithm. However, the LMS algorithm suffers from slow
and data-dependent convergence behavior. The NLMS
algorithm [1]-[2], an equally simple, but more robust
variant of the LMS algorithm, exhibits a better balance
between simplicity and performance than the LMS algo-
rithm, and has been given more attention in real time
applications.

A very serious problem, however, encountered in both
the LMS and the NLMS algorithms, is the choice of
the step size parameter that is a trade-off between the
steady-state excess error and the speed of convergence.
To remedy this problem, several works have discussed
variable step-size LMS algorithms [3]-[6]. In the same
context, a study on the improvement of the performance
of the NLMS algorithm is worth investigating. In [8], a
variable step-size NLMS algorithm (VSS-NLMS) is pro-
posed, where the convergence and steady-state analysis
of the VSS-NLMS algorithm is detailed. In this work,
echo cancellation using the variable step-size NLMS
(VSS-NLMS) algorithm in [8] is presented.

2 Proposed VSS-NLMS Echo
Canceller

Given the input vector xk, the Euclidean norm of
the input vector ‖xk‖2, the NLMS algorithm with fixed
step size, µ, for adjusting the adaptive echo canceller’s

coefficients at time instant k is defined as follows:

wk+1 = wk + µek
xk

‖xk‖2
, (1)

where the error ek is defined as ek = dk + nk − xT
k wk,

dk is the desired value and nk is the additive noise.
In this work, the fixed step size µ in (1) is made variable
and is updated according to the following recursion [7]:

µk = µk−1 − ρ

2
∂e2

k

∂µk−1
, (2)

which can be transformed, after substituting Equation
(1), to the form:

µk = µk−1 + ρekek−1
xT

k xk−1

‖xk−1‖2
, (3)

where the parameter ρ is a small positive constant that
controls the adaptive behavior of the step-size sequence
µk and T denotes transpose operation. Accordingly,
the coefficients of the VSS-NLMS echo canceller will be
updated according to a variable step-size NLMS (VSS-
NLMS) algorithm given by [8]:

wk+1 = wk + µkek
xk

‖xk‖2
, (4)

where the variable step size parameter is confined to the
following limits [8]:

µk =




µmax if µk > µmax

µmin if µk < µmin

µk otherwise,
(5)

and µmin, µmax are chosen to satisfy the convergence
requirements of the NLMS algorithm with fixed step size,
that is 0 < µmin < µmax < 2.

3 Performance Analysis
Let w∗

k denote the optimal coefficient vector being
tracked, and assume it is time varying according to
w∗

k+1 = w∗
k + ck, where ck is the disturbance process
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that is a zero-mean white process with covariance ma-
trix σ2

c I. Also, let ζk be the optimum estimation error
process defined as:

ζk = dk − xT
k w∗

k. (6)

Finally, let vk = wk − w∗
k denote the coefficient mis-

alignment vector. Then it is straight forward to see that:

E[e2
k] = ξmin + σ2

xtr[Gk] , (7)

where ξmin = E[ζ2
k ], Gk = E[vkvT

k ] and tr[ ] are the
minimum mean-square-error (MSE), the second moment
matrix of the misalignment vector and the trace opera-
tor, respectively.

A. Mean Behavior of the Weight Vector:
In what follows, the derivations of the mean behavior
of the weight vector for the VSS-NLMS algorithm are
presented. Starting with the error, ek, the expression in
(5), can be re-written as:

ek = ζk − vT
k xk, (8)

and using the independence assumption, the uncorrelat-
edness of µk with xk, ζk, and the fact that ck is zero
mean [3], the recursion for the mean behavior of the
weight vector is given by:

E[vk+1] =
[
I − E[µk]E[

xkxT
k

‖xk‖2
]
]

E[vk], (9)

where it is easy to show that the convergence of the
algorithm in the mean takes place if the average value
of the step size parameter is confined in the following
range:

0 < E[µk] < 2. (10)

B. Mean-Square Behavior of the Weight Vector:
In this section, the mean-square behavior of the weight
vector of the VSS-NLMS algorithm is presented. Fol-
lowing similar procedure as above, the second moment
matrix of the coefficient misalignment vector is given by:

Gk+1 =
[
1 − 2

N
E[µk] +

2
N

E[µ2
k]

]
Gk

+
[

σ2
ek

Nσ2
x

E[µ2
k] + σ2

c

]
I, (11)

where it is easy to notice that Gk is a diagonal matrix
and all its elements are equal. Notice also that σ2

ek
=

E[e2
k]. Similarly, the following expressions for the mean

and mean-square behavior of the step-size sequence µk,
respectively, are obtained as:

E[µk] =
[
1 − ρ(σ2

ek−1
+

2σ2
x

N
tr[Gk−1])

]
E[µk−1]

+ρ
σ2

x

N
tr[Gk−1], (12)

and

E[µ2
k] =

[
1 − 2ρ

N
(Nσ2

ek−1
+ 2σ2

xtr[Gk−1])
]

E[µ2
k−1]

+
2ρ

N
E[µk−1]σ2

xtr[Gk−1] + ρ2tr

[
1
N

(σ2
ek

I

+2σ2
xGk)(σ2

ek−1
I + 2σ2

xGk−1)
]
. (13)

4 Simulation results
In this section, the performance of an echo cancella-

tion system using the proposed variable step-size NLMS
(VSS-NLMS) algorithm is compared to that using the
NLMS algorithm with fixed step size. The transfer func-
tion of the echo path is modeled as (0 < a < 1):

H(z) = 1 + az−1 + · · · aN−1z−{N−1}. (14)

Two models for the impulse response of the echo path
was used: The first model, assumed for short echo path,
is significant up to the first 100 samples, while the sec-
ond model, assumed for relatively long echo path, is sig-
nificant up to the first 500 samples. The coefficient a in
both cases is chosen in such a way that the power level of
the impulse response will be attenuated by 60 dB at 100
and 500 samples respectively. Two different analysis are
considered for each of these models. One uses Gaussian
input signals while the other uses real-time speech sig-
nals. The speech signal is sampled at sampling frequency
Fs=11025Hz, and digitized at 8 bits/sample. The am-
plitude values of the input vector in both examples are
in the range -1, +1.

The initial step size for the VSS-NLMS algorithm is
µ0 = 0.04 while for the NLMS algorithm µ = 0.04.Also,
the value of the step size adaptation constant ρ used for
the VSS-NLMS algorithm is ρ = 8x10−4. Time averag-
ing of 50 independent runs was used, and the measure of
performance used is the echo return loss enhancement
(ERLE) defined as [6]:

ERLE = 10log10
E[y∗2

k ]
E[{y∗

k − yk}2]
dB ,

where y∗
k = xT

k w∗ is the true echo, w∗ is the impulse re-
sponse of the echo path, and yk = xT

k w is the simulated
one.

Example 1: Analysis with real-time Speech Signals
The experiments under this consideration use real-

time speech signal digitized as described above. Figure 1
displays the digitized speech signal and its frequency
spectrum. Figure 2 depicts the ERLE, using this signal,
for the VSS-NLMS algorithm and the NLMS algorithm
with fixed step size for the case when both algorithms
track an echo path of length, N = 100. The same
scenario for for longer echo path of length N = 500
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Figure 1: Digitized speech signal and its frequency
spectrum.

is shown in Fig. 3. The results show that the VSS-
NLMS algorithm converges faster, and at the same time,
achieves considerably higher ERLE than the NLMS algo-
rithm with fixed step size. A gain of about 7.5 dB and
1.5 dB of ERLE, for N = 500 and N = 100 respectively,
can be observed with the proposed algorithm over the
performance of the NLMS algorithm with fixed step size.
It is also note worthy to point out that for a real time ap-
plication, echo paths can typically be few thousands taps
long. The ERLE of the traditional NLMS algorithm is
very low compared to that of the VSS-NLMS algorithm
as can be observed from Fig.3.

Example 2: Analysis with Gaussian input Signals
Figure 4 depicts the ERLE, using Gaussian input Sig-

nals, for the VSS-NLMS algorithm and the NLMS al-
gorithm with fixed step size for the case when both al-
gorithms track an echo path of length, N = 100. The
same scenario for for longer echo path of length N = 500
is shown in Fig. 5. The results also show that the VSS-
NLMS algorithm converges faster, and at the same time,
achieves considerably higher ERLE than the NLMS al-
gorithm with fixed step size. A gain of about 6 dB and
4 dB of ERLE, for N = 100 and N = 500 respectively,
can be observed with the proposed algorithm over the
performance of the NLMS algorithm with fixed step size.

The step-size behavior of the VSS-NLMS and NLMS
algorithm for echo path lengths of N = 100 and N =
500, respectively, are depicted in Figures 6 and 7. It
can be observed from these figures that the step-size se-
quence increases very quickly immediately after initial-
ization, and therefore the VSS-NLMS algorithm is able
to converge faster than the NLMS algorithm as shown
earlier. Also the step-size reduces to a lower value as

0 1 2 3 4 5 6 7 8 9 10

x 10
4

−5

0

5

10

15

20

25

30

35

Iterations (k)

ER
LE

 (d
B)

VSSNLMS
NLMS   

Figure 2: ERLE, using real-time speech signals, for
the VSS-NLMS algorithm and the NLMS algorithm
with fixed step size for echo path length N = 100.
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Figure 3: ERLE, using real-time speech signals, for
the VSS-NLMS algorithm and the NLMS algorithm
with fixed step size for echo path length N = 500.

the steady-state is approached, and therefore the pro-
posed VSS-NLMS algorithm is able to converge to a
lower steady-state error, and consequently better ERLE,
than the NLMS algorithm with fixed step size.

5 Conclusion

In this work, an echo cancellation scheme using a sim-
ple and robust variable step-size NLMS (VSS-NLMS)
algorithm is presented. The step-size adaptation is con-
trolled by a gradient algorithm designed to minimize the
squared estimation error. Simulation results showed that
the VSS-NLMS algorithm achieved better ERLE than
the NLMS algorithm with fixed step size. Lastly, we
should mention that the proposed VSS-NLMS algorithm
requires (N + 40) extra multiplications/divisions and N
extra additions in comparison to the NLMS algorithm.
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Figure 4: ERLE, using Gaussian input signals, for the
VSS-NLMS algorithm and the NLMS algorithm with
fixed step size for echo path length N = 100.
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Figure 5: ERLE, using Gaussian input signals, for the
VSS-NLMS algorithm and the NLMS algorithm with
fixed step size for echo path length N = 500.
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Figure 6: Mean behavior of µk for the VSS-NLMS
algorithm for echo path length N = 100.
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