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Abstract

The convergence analysis of the least-mean fourth
(LMF) algorithm is derived. A novel approach is used
to study the convergence behavior of the algorithm. As
a by-product of this novel approach, expressions for
more general and new sufficient conditions for conver-
gence and the excess steady-state error for the LMF
algorithm are derived.

1 Introduction

The least-mean square (LMS) algorithm [1] is one of the
most widely used adaptive schemes. It has several de-
sirable features and some limitations. As such, several
LMS-variants have been proposed that trade some of the
LMS features for an enhanced performance in some of its
limitations. Of particular importance is the class of least-
mean square algorithms that employ an error nonlinearity
f(en) instead of the (linear) error term in LMS adap-
tation [2]-[4]. Examples include the sign-error algorithm
[5], the least-mean fourth (LMF) algorithm and its family
[6], and the least-mean mixed norm algorithm [7], all of
which are intuitively motivated. Table 1 defines f(e,,) for
many famous algorithms. Also, mentioned in Table 1 is
flen) = ae, +2(1 — a)ed which is the error nonlinearity
used in the mixed LMS-LMF algorithm with « as the mix-
ing parameter. This algorithm is found to result in better
performance than either the LMS or the LMF algorithms
in Gaussian and non-Gaussian environments.

The least mean-square algorithm and the least mean-
fourth algorithm fall under the generalized minimization
of the mean-pth-error function, that is J,, = E[e], p
being a positive integer, where p = 2 and p = 4 result,
respectively, in the LMS and LMF algorithms [1].

While the LMS algorithm is very well established in
adaptive filtering, the LMF algorithm has been proposed
by [6] and has recently gained attention [7]-[9]. The two

|| Algorithm | flen) ||
LMS €n
NLMS o
[xal
Sign-LMS
(Sign-Error) signlen]
Sign-LMS
(Sign-Regressor) sign[xy)
Sign-LMS
(Sign-Error, signlen]sign[x,]
Sign-Regressor)
LMF &3
Mixed LMS-LMF | ae, +2(1 — a)e;

Table 1: Examples for f(e,).

algorithms have different convergence behavior and ro-
bustness to noise statistics (Gaussian versus non-Gaussian
noise) [6]. For example, the LMF algorithm will clearly
have a larger gradient driving it to converge faster when
away from the optimum (e} > e2 for e2 > 1). However,
the LMS will have more desirable characteristics in the
neighborhood of the optimum.
The LMF algorithm is defined by the following cost
function [6]:
In = Eley), (1)

where the error e, = d,, + w, — c'x,, d, is the desired
value, ¢, is the filter coefficient of the adaptive filter (with
Copt is its optimal value), x,, is the input vector and w,
is the additive noise.

In this work, the convergence and the steady-state
analysis of the LMF algorithm are derived using a novel
approach. Eventhough, some of the results are identical
to those found in [6], expressions for more general and
new sufficient conditions for convergence and the excess
steady-state error for the LMF algorithm are obtained.
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2 Convergence Analysis of the
LMF Algorithm

Throughout our ensuing convergence analysis, the follow-
ing commonly-used assumptions [1], [6] are made:

A.1 The noise sequence {wy,} is statistically indepen-
dent of the input signal sequence {x,} and both
sequences have zero mean.

A.2 The noise w,, has zero odd moments.

. AN
A.3 The weight error vector, v,=cy,
pendent of the input X,,.

— Copt, 15 inde-

The proposed algorithm for recursively adjusting the co-
efficients of the system is expressed in the following form:

Cnt1 = Cp + 2ueixn, (2)

where i is the step size.

To study the convergence of the algorithm in the mean-

square, let K,, = E[v,,v1l] be the weight-error correlation

matrix, where
VnJerS_,’_l = {vn — 6uw; xnxTvn T}

x{T — 6pw’x,x’}

+2u{ vy, — 6pwx,x1 v, yx,w

+2pwdx, vI{T — 6pwx,xt}

+4ptwlx,xt . (3)

Therefore, it can be shown that the weight-error correla-
tion matrix is governed by the following recursion:

K,.1 = K,—6us’RK,+K,R]
4362 2RK, R + Rir{RK,}]
+H4p* ol R, (4)

where 02, x* and ¢% are the noise power, the fourth-
and the sixth-order moments of the noise, respectively,
R = E[x,x1] is the autocorrelation matrix of the input
signal, and tr{} denotes trace operation.

It is assumed that the input autocorrelation matrix,
R, is positive definite with eigenvalues, \}s (); is the ith
eigenvalue). Hence, it can be factorized as R = QAQT,
where A is the diagonal matrix of the eigenvalues, A =
diag(A1, A2, ..., An), and Q is the orthonormal matrix
whose i column is the eigenvector of R associated with
the " eigenvalue, that is, QTQ = I. This results in
G, = QTK, Q. Hence Equation (4) will take the fol-
lowing form:

G,i1 = G, —6uc’[AG, +G,A]
436121 2AGA + Atr{AG,)]
+4p2 90 A (5)

Let h,, be a vector whose entries are the diagonal ele-
ments of G,,, that is h!, = G%? i = 1,2,... N, and let
T = [A1,A2,...,Anv]T. Consequently, Equation (5) is
transformed into the following form:

h, 1 = Ah, +4p°¢5T (6)

with
A =diag(p1, p2, ..., pn) + 36u X, TTT,  (7)

and
pi =1 —12u02 N\ + 721X 2 N2, i=1,...N. (8)

The convergence of (6) depends on A. This will converge
if and only if the eigenvalues of A, i.e. the solutions of
(9), lie within the unit circle:

det [A —~I] =0, 9)

where det [Z] is the determinant of matrix Z.
The determinant of [A — 1] can be shown to have the
following form [10]:

det[A —~1] = [sz'vzl(/)i - )]

Y
L+ 367Xy, Y ——— 1 (10)
= P

Following the approach of [11], it can be shown
that necessary and sufficient conditions for the roots of

det [A — ~1I] to be inside the unit circle are:
pi < 1, i=1,2,...,N (11)
and
\2
14 36px% Z >0, (12)

i= 1

Consequently, inequality (11) yields the following condi-
tion:

pN BN —a2] <0, i=1,2,...,N.  (13)

Since the step-size parameter u is a positive quantity and
A;'s are positive values (since R is positive definite) then
inequality (13) leads to the following range for the step-
size p:

2

64)\

O<p< i=1,2,...,N. (14)
Also, inequality (12) leads to a second condition on p for

convergence in the mean-square sense:

N

3pX i
e e 15
— o — BuxAi (15)
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It is of important practical interest to translate con-
ditions (14) and (15) into direct bounds on the step-size
parameter p. First, observe that the left-hand side of (15)
is a strictly monotonically-increasing function of the step-
size 1 and is equal to zero for = 0. Hence, if we let

Wi, t=1,2,..., N, denote the solutions of the following
equation:
N
3uxt N
Z A =1, (16)
iz Cw Grx A

assuming that the \;’s are arranged in an increasing order,

ie. A1 < X2 < ... < Ay, we have then:
2 o2
0<u < < g < =
H 6)(%))\]\[ H2 GX%U)‘N—I
2
. < < L 17
NS G (17)

Therefore, for the conditions in (14) and (15) to hold, x
should be bounded by:

0<p<pg. (18)

A closed-form expression for p1 cannot be found. How-
ever, following the analytical considerations outlined be-
low, a tight lower bound on p4 is obtained.

Let p1 < po < pg < ... < upn be the soultion of (16).
Our objective is to set a lower bound on ;. To do that,
let us rewrite (16) in the following form [11]:

b)) s
e <_) e
-0 (19)

where by comparison of similar terms in (16) and (19),
one finds:

NV L 9 Ny
bl*Ziﬂm*ggJ Zi:1)‘l

")
A theorem established in [12] asserts that the smallest
root w1 is lower bounded by:

N
“1)(NS;— 52)

(21)

Sl+\/

where

Z — (22)

zl‘uZ

and
Nor1\? Yo\ XM

S — (—) (1) -y Ll e
; i ;Mi ; Mg fhj

Consequently, using (20), the values of S} and S in terms
of bl and bg:

S1=b
(24)
Sy = b} — 2bs.
Substituting (24) in (21) yields in the following:
N *
p1 > =p*. (25)

YT b+ /(N — 12— 20,N(N — 1)

Thus, to ensure convergence in the mean square, i should
be bounded by

0<p<p, (26)

and to make the above range more practical, we note that
1

B> (27)
b

Then, to ensure convergence in the mean square, i should
be bounded by:

2

g,
—_— 28
D IAIPY 2%)

which is identical to that found in [6], even though it has
resulted from an analysis which is totally different from
that of [6].

O<pu<

3 The Excess Steady-State MSE

The excess steady-state MSE of the LMF algorithm can
be calculated by evaluating the misadjustment factor.
The quantity E[(x%v,,)?] represents the excess MSE, i.e.:

El(x va)?]

N .
=1

§€$C€SS

where ¢! is obtained directly from (5):
Gnir = 9 — 12p05Nig,,

+36%x [m? + \i Z)\zgn

%}

A2 G0 N, (30)
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Consequently, the excess steady-state MSE for the LMF
algorithm is given by:

N i ¢S,
Zi:l 302, —9uXNixi

N XX
1-9 Zi:l 3012‘}—9,”\1-)(3}

(31)

Cemcess =

Finally, sufficient conditions for the convergence of the
LMF algorithm are obtained as:
e

0 < H < GX%U)\mam

N 3phixe
Zi:l Ua—ﬁukixﬁj < 1

(32)

Remarks:

1. Note that for small values of the step size i, expres-
sion (31) can be approximated by:

1 ¢8 &
excess =~ — )\z
G 33 ; (33)

2. Remark that (33), as obtained in [6], is a special
case (for small p) of our own expression of (31).
Therefore, our analysis resulted in a more general
expression for the excess steady-state MSE for the
LMF algorithm than has been found in [6].

3. Moreover, our analysis resulted in a new and more
general sufficient conditions for the LMF algorithm
as given by (32).

4. For the case when the step-size parameter
2

i is small compared to SATZUIX%U' condition
N 3pix’
Zi:l o2 —6uXixE <1
in (32) may be simplified as follows:
2
o
0<p< . . (34)

3Xﬁ; ZZZ\; Ai

5. If one compares (28) and (34), (28) results in a lower
range than that of (34). This should be expected
since (34) is an approximation.

4 Conclusions

The analysis presented here resulted in a more general ex-
pression for the excess steady-state MSE as well as new
sufficient conditions for convergence of the LMF algo-
rithm.
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