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ABSTRACT

Estimation of the direction of arrival of a signal source by
means of a monopulse antenna is one of the oldest and most
widely used high resolution techniques [1]. Although the sta-
tistical performance of this estimation technique has been
extensively investigated for decades, recent work [2] based
on an analysis of the problem from the point of view of op-
timal detection applied to a two-sensors system, has shown
that the common solution (detector/estimator) restricts the
accessible performance. Indeed, changing the detector is nec-
essary to optimize the overall performance. First derived in
the particular case of Rayleigh-type signal source, this ap-
proach can be extended to the case of a signal source of un-
known amplitude (including the non fluctuating case). The
present paper establishes analytical performance of both new
and common solutions in that case.

1. NOTATION
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2. INTRODUCTION

A monopulse antenna (radar or telecom) determines the an-
gular location of a signal source (radar target or telecom
transmitter) by comparing the returns from difference (∆)
and sum (Σ) antenna pattern [1][3]. It is a particular solu-
tion of the more general problem of finding the direction
of arrival (DOA) of a signal source. As mentioned lately
in [2], the usual approach related to this particular solu-
tion [3][4][5](ref.[3],[12],[20],[27]) limits the contribution of
the difference channel to the estimation part of the problem,
and therefore reveals an "historical" separate analysis of de-
tection and estimation. A improved (detector, estimator)
couple has been derived in [2] in the case of Rayleigh-type
signal source by applying optimal detection theory to the
monopulse antenna. Nevertheless, if the Rayleigh case is of

fundamental interest for some applications (mainly radar ap-
plications), most of signal sources (telecom for example) have
different amplitude fluctuation laws. If it seems unrealistic
to try to solve the problem of optimal detection/estimation
using the statistics averaged over all possible observations,
for every amplitude fluctuation law of interest, a suboptimal
but very general approach consists in solving the problem
for each observation, regarding the amplitude fluctuation law
as unknown (the most likely hypothesis when measuring an
unknown actual signal source). Additionally, this character-
ization may also be useful to support tracking performance
analysis where monopulse measurement is a preliminary step
of nonstationary process as the Kalman Filter.

In order to allow straightforward comparison with results
derived in [2], the present paper keeps the same analysis
breakdown of the optimal detection problem [6], including
equations numbering. Thus, we first formulate the optimal
detector — the Neyman-Pearson criterion — applied to the
monopulse antenna, and its associated composite hypothe-
ses testing problem, as certain parameters are unknown. To
solve the composite hypotheses testing problem, we apply
the GLRT method and establish the analytical expressions
of the detector and associated estimators, in particular that
of the monopulse ratio. Lastly, we develop two approxima-
tions of the (detector, monopulse ratio estimator) pair. The
first is based on the common "historical" approach [4][7].
The second, which we characterized analytically, proposes an
appreciable improvement of the performances of the compos-
ite hypotheses testing problem. While retaining a compara-
ble estimation Root Mean Square Error (RMSE), it helps
achieve better on average detection performance character-
istics, an improvement which is illustrated by an example.

3. PROBLEM FORMULATION

A common model for the receiver signal vector is:

−→
v (t) =

(
Σ(t)
∆ (t)

)
= α (t)−→g (θ0) +

−→n (t) (1)

where −→g (θ) = (gΣ(θ), g∆(θ))
T is the array response vector

(steering vector). It represents the array complex response
to a narrowband point source situated at an angle θ. The
complex envelope of the source is denoted by α (t), and −→n (t)
is an 2x1 additive noise vector. Consider the following de-
tection problem:

H0 :
−→v (t) = −→n (t)

H1 :
−→v (t) = α (t)−→g (θ0) +

−→n (t)
(2)

Based on an observation consisting of I independent array
snapshots −→v (t1),...,

−→v (tI), we want to decide whether to
accept the null hypothesis (noise only) H0, or to accept the
alternate hypothesis (signal plus noise) H1.

3.1 Optimal Detector: LRT

If the pdf of the measurement is known under both hypothe-
ses, the optimal detector - in the Neyman-Pearson sense [6] -
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is the Likelihood Ratio Test (LRT). In the problem at hand,
the additive noise −→n (t) is a circular, zero mean, white (both
temporally and spatially), complex Gaussian random vec-
tor process with variance σ

2

n
. The signal α (t) represents

the complex envelope of the source (including power bud-
get equation, signal processing gains) at time t and its a
priory fluctuation law is unknown. The signal source does
not alter its relative position with respect to the array dur-
ing the I snapshots (static situation: θ0 is constant). De-

note by
−→

V =
(
−→

ΣT
,

−→

∆T

)T
, where

−→

Σ = (Σ1, ..,ΣI)
T
and

−→

∆ = (∆1, ..,∆I)
T
, the 2I dimensional observation vector

related to the I snapshots, then:
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Under these assumptions the LRT takes the form of:
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and can be reduced to:

Re
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Denote by D the event of a threshold detection. Then, Prob-
ability of False Alarm - PFA = P (D | H0) - and Probability
of Detection - PD = P (D | H1) - are given by (real Gaussian
law):

PFA =
1− erf (T)

2
(4a)

PD =

1− erf

(
T −

√
2Iσ2

α
‖−→g (θ0)‖

2

)

2
(4b)

where: σ2
α
=

−→
α
H−→
α

I
=

1

I

(
I∑

i=1

|αi|
2

)

3.2 GLRT

For cases in which some of parameters are unknown, the
detection problem in (2) becomes a composite hypotheses
testing problem (CHTP) [6]. Although not necessarily opti-
mal, the GLRT (Generalized LRT [6]) is widely used in such
problem. Let’s denote by −→ϕ j the unknown parameters vec-
tor under hypothesis j, the GLRT for deciding whether to
accept H0 or to accept H1 is given by:

GLRT =
max−→ϕ 1

f
(−→
V | −→ϕ 1

)

max−→
ϕ 0

f
(−→
V | −→ϕ 0

) = f
(−→
V | −̂→ϕ

1

)
f
(−→
V | −̂→ϕ

0

) H1

≷
H0

T (5)

where −̂→ϕ j stands for the Maximum Likelihood Estimates
(MLE) [6] of the unknown parameters under hypothesis j.
In the problem at hand, the observation equation (1) may
be rewritten according to an equivalent form:

−→v (ti) = β (ti)
−→x +−→n (ti) (6)

where: β (ti) = α (ti) gΣ(θ0),
−→x = (1, r(θ0))

T
, r(θ) =

g∆(θ)

gΣ(θ)

This is the "Monopulse Ratio" reformulation of the observa-
tion equation. Under this formulation, the possible unknown

parameters are
{
σ
2
n, r,

−→

β
}

,
−→

β = (β
1
, .., β

I
)T , and the final

form of (5) depends on whether the noise power (σ2
n
) is an

unknown parameter (7) or not (8) [8]:

GLRT ⇐⇒

Tr

(
R̂

)
+

√
Tr

(
R̂

)2
− 4

∣∣∣R̂∣∣∣
2σ̂

2

n

H1

≷
H0

T (7)

GLRT ⇐⇒
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(
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)
+

√
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(
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)
2
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2σ2

n
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T (8)

where: ̂R=
1

I

I∑

i=1

−→
v (ti)

−→
v (ti)

H

In both cases:

r̂ =
Tr

(
R̂

)
+

√
Tr

(
R̂

)2
− 4

∣∣∣R̂∣∣∣− 2∥∥∥−→Σ∥∥∥2
2
−→

∆H
−→

Σ

(9)

Form (7) of GLRT is a constant false alarm rate (CFAR)
detector which assesses the noise power (σ2n) under H0 and

H1 [8] using the smallest eighenvalue of ̂R:

σ̂
2

n
=

Tr

(
R̂

)
−

√
Tr

(
R̂

)
2

− 4

∣∣∣R̂∣∣∣
2

As most of CFAR process, its performance (PD vs. PFA) is
poor for small number of snapshots. This is the reason why
σ2n estimation is always performed at a different stage of the
processing, generally at the output of the Matched Filter,
where a large amount of samples is available. Therefore,
hereinafter, it is assumed that σ2

n can be estimated precisely
enough to be a known parameter of observation model (6)
leading to form (8) of GLRT. It is worth noticing that in case
of Rayleigh signal source (8) and (9) have the same form [2].

For completeness, let’s mention that in the particular
case where β

1
= β

2
= .. = β

I
(non fluctuating case), ex-

pressions (7), (8), (9) and σ̂
2

n are different [8]. From an
operational point of view, it is preferable not to use expres-
sions derived in that case because of their specificity and the
dubious validity of the hypothesis of non fluctuating signal
source in most cases.

3.3 Practical GLRT approximations

Except for case I = 1, where:

GLRT ⇐⇒ |∆|2 + |Σ|2
H1

≷
H0

T, r̂ =
∆

Σ
(10)

the exact solution of the CHTP, forms (8) of the GLRT and
(9) of the MLE of r, is unpractical for establishing analytical
results. Although the computing power of today’s computers
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allows a precise study of its performance through a Monte-
Carlo type simulation with a large number of draws, it is
always interesting to be able to establish analytical results
based on approximated solutions which may be used as cal-
ibration tools for this type of simulation (number of draws
necessary for a representative measurement).
The usual "historical" approximation consists in restricting
the use of the difference channel ∆ to computation of MLE
of r only, where detection is achieved using the sum chan-
nel Σ only. Under this assumption, the samples which pass
the detection test and participate in the estimation process
mostly belong to the sum beam width (see figure 1) and

verify
∥
∥
∥
−→

Σ

∥
∥
∥

2

>

∥
∥
∥
−→

∆

∥
∥
∥

2

. In this case [2]:

GLRT ⇐⇒

∥
∥
∥
−→

Σ

∥
∥
∥

2 H1

≷
H0

T, r̂ ≈

−→

Σ
H
−→

∆
∥
∥
∥
−→

Σ

∥
∥
∥

2
(11)

This approximated form of r was introduced by Mosca [3] as
the solution of "the problem of estimation of angle of arrival
in amplitude comparison monopulse radars", but with no
reference to the associated detection test (see introduction).
A more global approach is the theoretical approach disclosed

above. It leads to a symmetrical form (relative to
−→
∆ and

−→
Σ)

of the GLRT (8) and therefore suggests an approximation
based on a symmetrical criterion, such as the correlation

of the 2 channels under H1 with
∥
∥
∥
−→
β

∥
∥
∥ large. In this case

|
−→

Σ
H−→
∆|

2

‖
−→

Σ‖
2

‖
−→

∆‖
2 ≈ 1 and [2]:

GLRT ⇐⇒ Tr

(
R̂

) H1

≷
H0

T, r̂ ≈

∥∥∥
−→

∆

∥
∥
∥

4

+

∣∣∣−→ΣH−→∆∣∣∣2
−→

∆H
−→

Σ

(∥∥∥−→Σ∥∥∥2 + ∥∥∥−→∆∥∥∥2
)

(12)
Under this form, the GLRT becomes a simple quadratic de-
tector based on the use of the energy available on the 2 re-
ception channels. The detection performance (PD vs. PFA)
of this type of detector are well known (2I order non cen-
tral Chi-Square laws). However, the form of r̂ obtained is
not a great deal simpler than (9). It is simplified when∥∥∥
−→

Σ

∥∥∥
2

>

∥
∥
∥
−→
∆

∥
∥
∥

2

. We then have again the form (11) of r̂

and (12) becomes:

GLRT ⇐⇒

∥∥∥
−→

Σ

∥∥∥
2

+

∥∥∥
−→

∆

∥∥∥
2 H1

≷
H0

T, r̂ ≈

−→

Σ
H
−→

∆
∥
∥
∥
−→

Σ

∥
∥
∥

2
(13)

A large number of Monte-Carlo simulations have shown [8]
that solution (13) offers better performances than solution
(12) over the complete main lobe of channel Σ: same PD
but lower RMSE (see figure 2 for an example). Solution
(13) is therefore a better solution of the CHTP for which an
analytical formulation of the performances has been derived.
We shall designate hereinafter the various solutions (8-9) (11)
(12) and (13) of the CHTP as "exact glrt", "mosca sum",
"power glrt", "mosca power", respectively.

4. STATISTICAL PREDICTION

Assessing the statistical performances of the CHTP requires
a joint analysis of the performance of the detector (GLRT)
and the MLEs of the unknown parameters. It is indeed
the expressions of the unknown parameters estimators which
determine the form of the GLRT, which in turns selects
(conditions) the observations participating in the estimation.

Thus, in strict logic, studying the performances (mean, vari-
ance) of the MLEs should make use of conditional expecta-
tion, as the estimation is conditioned by the detection test.
This aspect is seldom covered in the open literature, includ-
ing reference works [6] (and others) where detection perfor-
mance and estimation performance are covered as separable
problems. The main reason is probably the fact that the for-
mulation and assessment complexity increases significantly
in the general case. Further, this approximation is fully jus-
tified when the detection probability is close to 1, i.e. for
SNRs high "enough" — per the detection test.
E (Re{r̂} | D) and V ar (Re{r̂} | D) can be computed from
E (r̂ | D), E

(
|r̂|2 | D

)
, E

(
r̂
2 | D

)
using the following identi-

ties:

Re {r̂}2 =
1

2

[
|r̂|2 +Re

{
r̂
2
}]

V ar (Re{r̂}) = E
(
Re{r̂}2 | D

)
−Re{E (r̂ | D)}2

which also enables to assess statistical prediction of Im{r̂}
(see [5](ref.[12],[27]) for applications). For sake of simplicity
in formulas, we assume that the noise has been normalized
(σ2

n
= 1). Characterization of solution "mosca sum" in the

general case of colored noise has been covered in [4] (I = 1)
and [7] (I ≥ 1). In the case of white noise, it comes:

D =

{
−→
V |

∥∥∥−→Σ∥∥∥2 ≥ T

}

PFA = e
−T

eI−1 (T ) , PD =

∫
fχI

2

(
t, Iσ

2

β ,1
)
dt

t≥T

E (r̂ | D) = µ

∫ f
χ
I+1
2

(
t, Iσ2

β ,1
)

PDt
dt

t≥T

E
(
r̂
2 | D

)
= µ

2

∫ f
χ
I+2
2

(
t, Iσ2

β, 1
)

PDt
2

dt

t≥T

E
(
|r̂|2 | D

)
=

∫ f
χ
I

2

(
t, Iσ2

β ,1
)

PDt
dt

t≥T

+λ

∫ f
χ
I+1
2

(
t, Iσ2β ,1

)

PDt2
dt

t≥T

+ |µ|2
∫ f

χ
I+2
2

(
t, Iσ2

β ,1
)

PDt
2

dt

t≥T

where: µ= rIσ2β , λ = |r|2 Iσ2β , σ2β =
1

I

(
I∑

i=1

|β
i
|2
)
.

In the case of solution "mosca power" [8]:

D =

{
−→
V |

∥∥∥−→Σ∥∥∥2 + ∥∥∥−→∆∥∥∥2 ≥ T

}

PFA = e
−T

e2I−1 (T )

PD =

∫∫
fχI

2

(
x, Iσ

2

β |r|2 ,1
)
f
χ
I

2

(
t, Iσ

2

β ,1
)
dxdt

x+t≥T

E (r̂ | D) = µ

∫∫
f
χ
I+1
2

(
x, Iσ

2

β |r|2 ,1
) f

χ
I+1
2

(
t, Iσ2

β ,1
)

PDt
dxdt

x+t≥T

E
(
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2 | D

)
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2
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f
χ
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(
x, Iσ

2

β |r|2 ,1
) f

χ
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2

(
t, Iσ2

β ,1
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dxdt

x+t≥T
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Figure 1: Probability of Detection, PFA = 10
−4
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The above expressions ("mosca power") are simple to com-
pute [8]. When I ≥ 2, they can all be reduced to simple
convergent integrals of bounded functions and assessed us-
ing numerical integration. The only difficulty arises when
I = 1 for computing E

(
|r̂|2 | D

)
which requires the evalu-

ation of a simple integral on domain [0, T ] of a unbounded
function.

5. PERFORMANCE COMPARISON

As an example of performance comparison, we consider the
multifunction Radar case. Due to time budget constraint,
the maximum number of observations available per tar-
get is generally 2 (I = 2). A likely probability of false
alarm is PFA = 10

−4. The Signal to Noise Ratio (SNR)
is adapted to obtain PD = 0.9 when signal source is on bore-
sight and detected on Σ channel only. The monopulse an-
tenna model corresponds to a rectangular surface sum an-
tenna (1◦ beamwidth) with a plane surface uniform cur-
rent distribution associated with an appropriate difference
beam. Figure (1) and (2) depicts respectively the variation
of PD and RMSE within Σ channel main lobe, according
to (detector,estimator) solution pair of the CHTP. In fig-
ures (1) and (2) "Theo" and "Simu" stands for Theoretical
(assessed using analytical formula) and Simulation (assessed
using Monte-Carlo runs). All PFA measurements has been
performed on 10

9 independent trials. All PD and RMSE
measurements has been performed on 10

6 independent tri-
als. The two figures illustrates the on average superiority of
"mosca power" solution over "mosca sum" solution (almost
equal RMSE and improved on average PD), and additionally
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Figure 2: Conditional RMSE, PFA = 10
−4

demonstrate the perfect adequacy between simulations and
theoretical formulas derived for "mosca power" solution.

6. CONCLUSION

This paper, generalizing results derived in [2], emphasizes
the existence of a better (detector, estimator) solution pair
of the monopulse antenna CHTP, whatever the amplitude
fluctuation law, and sets forth its analytical characteriza-
tion. In addition to the expected impact on the future imple-
mentation of monopulse antennas, it contributes to illustrate
the often unacknowledged or underestimated interaction be-
tween the components of the (detector, estimator) solution
pairs of the CHTP. This is particularly true in real systems
(radar, telecoms, sonar) where the (contractual) operating
area of interest seldom corresponds to PD ≈ 1, which is the
only case where detection and estimation are disconnected
problems.
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