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ABSTRACT

In signal analysis the standard linear signal transforms fol-
low as the maximum likelihood solutions for the Gaussian
additive noise environment. In some applications signals
are corrupted by a heavy-tailed kind of noise. The result-
ing noise in quadratic and higher order time-frequency dis-
tributions (TFD) is inherently a mixture of the Gaussian
input noise and an impulse noise component, due to the
higher order functions of a signal. For these forms of input
or resulting noise the robust signal transforms and TFDs
can outperform standard ones. Several forms of the ro-
bust TFDs are considered: iterative based, median based,
and L−estimation based representations. In addition to
the overview of these recently introduced forms, in this pa-
per we propose a recursive on-line realization of the robust
TFDs based on the robust STFT. It is shown that higher
order TFDs, developed by using the robust STFT in the
initial stage, and calculated in recursive manner, produce
significantly better results than their counterparts based on
the local autocorrelation function.

1. INTRODUCTION

Standard signal transforms and time-frequency distribu-
tions (TFD) are very sensitive to an impulse noise influ-
ence. They can be considered as the maximum likelihood
estimates, resulting from corresponding minimization prob-
lems for Gaussian noise environment. In the quadratic and
higher order TFDs resulting noise can be consider as a
mixture of the Gaussian and impulse noise, even for pure
Gaussian input noise. These facts motivated rewriting sig-
nal transforms and TFDs within Huber robust statistics
concept resulting in the robust M-, median filter and L-
filter forms of the corresponding transforms. Details on
these transforms realization can be found in [1, 2, 3]. Two
applications of these transforms are highlighted: instanta-
neous frequency (IF) estimation and design of robust filters
in frequency domain [4, 5]. Note that all these transforms
are calculationally demanding with iterative or sorting pro-
cedures performed for each point of the TF plane. Another
drawback of the mentioned higher order TFDs is the fact
that they are more sensitive to the impulse noise influence
than the robust STFT. At the same time the robust STFT
has a weak TF resolution.

In order to overcome the mentioned problems, higher or-
der TFDs, calculated in recursive manner from the robust
STFT, are presented. Also, a recursive on-line realization
of the robust STFT is proposed. In this way we get highly
concentrated TFDs of non-linear FM signals, calculated in
an efficient manner and robust to the impulse noise influ-
ence.

The paper is organized as follows. Brief review of the
robust TFDs is given in Section II. Recursive realization of
the robust STFT is given in Section III. The new forms of
the robust TFDs are presented in Section IV. Comparison
of the presented transforms in the IF estimation is done in
Section V.

2. ROBUST TRANSFORMS

General unitary signal transforms can be obtained as solu-
tion of

S(k) = argmin
m

N−1

n=0
F (s(n)ϕk(n)−m), (1)

where F (.) is the loss function while ϕk(n), k ∈ [0, N) are
the basis functions [2]. In the same way, the generalized
TFDs can be written as

TF (n, k) = argmin
m

N−1

l=0
F (γ(n, l, k)−m), (2)

where
γ(n, l, k) = x(n+ l) exp(−j2πlk/N),

γ(n, l, k) = x(n+ l)x∗(n− l) exp(−j4πlk/N) (3)

produce the STFT and the Wigner distribution (WD), re-
spectively. For other forms of γ(n, l, k) various versions of
distributions from the Cohen class (CD), L-Wigner distri-
bution (LWD), and Polynomial-Wigner Ville distribution
(PWVD) [6, 7, 8] can be defined. Standard signal trans-
forms and TFDs are produced from (1) and (2) for the loss
function F (e) = |e|2. However, the standard transforms
are very sensitive to an impulse noise environment. In the
robust statistics other loss functions are used to overcome
this drawback [9]. The commonly used loss functions are
given in Table I. For example, the standard and the mar-
ginal median form of the robust STFT produced by the loss
function given in the third column of Table I are:

STFTS(n, k) = mean{x(n+ l) exp(−j2πlk/N)|l ∈ [0, N)}
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Standard F (e) = |e|2
Robust 1 F (e) = |e|
Robust 2 F (e) = |Re(e)|+ | Im(e)|
Myriad form F (e) = log(|e|2 +K2)

Table 1. Some common loss functions.

STFTR(n, k) =

median{Re{x(n+ l) exp(−j2πlk/N)|l ∈ [0, N)}}+
+jmedian{Im{x(n+ l) exp(−j2πlk/N)|l ∈ [0, N)}} (4)

For impulse noise environment γ(n, l, k) (3) has twice as
many impulses as the input signal, meaning that these rep-
resentations would be more sensitive to the impulse noise
than the robust STFT. Situations becomes worse in the case
of the higher order robust TFDs (for example for the ro-
bust PWVD) where number of impulses can be even larger.
These facts motivated development of the new robust TFDs
that will be presented in Section IV.

The L-filter forms of the signal transforms and TFDs
are introduced as an extension of the robust forms based
on the minimization problem (1) and (2). The L-filter form
of the robust STFT can be written as:

STFTL(n, k) =
N−1

l=0
al[rl(n, k) + jil(n, k)],

where rl(n, k) and il(n, k) are elements from the setsR(n, k) =
{Re{x(n+m) exp(−j2πkm/N)},m ∈ [0, N)} and I(n, k) =
{Im{x(n+m) exp(−j2πkm/N)}, m ∈ [0, N)}, respectively,
sorted into a non-decreasing order

rl(n, k) ≤ rl+1(n, k), il(n, k) ≤ il+1(n, k). (5)

The L-filters are usually generated in such a way to produce
an unbiased estimate of the input signal [10]. This condition

holds for:
N−1
l=0

al = 1 and al = aN−1−l l ∈ [0, N). The
α-trimmed version of the L-filters will be used in this paper:

al =
1

N−2α(N−2) l ∈ [(N − 2)α, (2−N)α+N − 1]
0 elsewhere,

(6)
where α ∈ [0, 0.5]. Note that the α-trimmed form for α = 0
reduces to the standard STFT, while for α = 0.5 it reduces
to the robust STFT (4). All presented robust forms are
computationally demanding, since they require that corre-
sponding procedures (iterative or sorting) are performed for
each point in the TF plane.

3. RECURSIVE REALIZATION OF THE
ROBUST STFT

The standard STFT can be efficiently realized in a recursive
manner as:
STFT (n+ 1, k)

=
1

N
x(n+N)− 1

N
x(n) + STFT (n, k) ej2πk/N . (7)

Robust STFTs are accurate estimates of the standard STFT
of non-noise signal. This fact motivated introduction of the

recursive realization based on the widely known recursive
realization of the standard STFT.

Step 1: Calculation of the robust STFT STFT∆(n, k) in
the initial instant, by using iterative or sorting procedures.
Set R = 0, P = 0.

Step 2: Calculation of the inverse DFT based on the
robust STFT:

f̂(n+m) = N

N−1

k=0

STFT∆(n, k)e
j2πkm/N , m ∈ [0, N). (8)

Step 3: Calculation of the maximal value of f̂(m) within
the interval:

fmax = max{|f̂(n+m)|,m ∈ [0, N)}. (9)

Step 4: If the following condition holds:

|x(n+N)| ≤ (1 + η)fmax (10)

then f̂(n+N) = x(n+N) and P = 0; otherwise f̂(n+N) =

f̂(n+N − 1) and P = P + 1.
Step 5: Recursive calculation of the robust STFT in the

next instant:

STFT∆(n+ 1, k)

=
1

N
f̂(n+N)− 1

N
f̂(n) + STFT∆(n, k) e

j2πk/N (11)

and R = R+ 1, n = n+ 1.
Step 6: If R ≤ Rmax and P ≤ Pmax, go to Step 3,

otherwise go to Step 1 and recalculate the robust STFT by
using iterative or sorting procedures.

Comments on the algorithm. It can happen that the
true value of new sample f(n+N) is larger than the maxi-
mal sample of the noise-free signal within the previous win-
dow fmax. In order to avoid situation that this sample is
recognized as an impulse, we set larger value than fmax in
(10), η ≥ 0. In our numerical calculation η = 0.25 is used.
In order to avoid accumulation of the discretization error
in the registers, recursive realization of the standard STFT
needs recalculation by using the FFT techniques after rel-
atively large number of samples. It should be done in the
recursive realization of the robust STFT, as well. How-
ever, since the recursive robust STFT is not equal to any of
the directly calculated form, we set number of samples for
recursive calculation of the robust STFT relatively small,
Rmax = 32. Furthermore, if there is no signal within a
wide interval, and fmax is close to zero,then the new sam-
ple of signal can be considered as an impulse, and it can be
neglected in our algorithm. In order to avoid this case, we
set that maximal number of the consecutive samples, where
the previous sample is taken as the signal estimate, in the
current sample, Pmax, is relatively small. In numerical ex-
amples Pmax = 3 is used.

4. REALIZATION OF THE ROBUST TFDS

Calculation of the higher order TFDs from the STFT is a
common approach in the TF analysis. The robust STFT
can be used as the initial stage for calculation of robust
higher order TFDs, in the same manner as in the case of
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the standard transforms. Here, property that the robust
STFT reduces impulse noise is combined with the property
that higher order TFDs are highly concentrated. Several
forms of the robust higher order TFDs, based on the robust
STFT, are itemized below.

• The windowed robust STFT can be calculated by
rSTFT (n, k) = STFT∆(n, k)∗kW (k), whereW (k) is
the FT of the desired window function and ∗k repre-
sents the convolution in frequency. For instance, for a
Hanning window (discrete domain), this convolution
reduces to

rSTFT (n, k) =

1

i=−1
ciSTFT∆(n, k + i),

where c0 = 1/2, c±1 = 1/4. Similar expressions can
be derived for other window types.

• Robust forms of the WD based on the robust STFT
are determined as [11]
rWD(n, k) =

N/2

l=−N/2
STFT∆(n, k + l)STFT

∗
∆(n, k − l). (12)

Pseudo form of the rWD can be determined in the
same manner as the windowed form of the robust
STFT.

• The S-method (SM) [11] combines favorable prop-
erties of the STFT (non-aliased for the Nyquist rate
sampled signal, along with cross-terms reduction) and
the WD (high concentration). We define its robust
counterpart as
rSM(n, k) =

N/2

l=−N/2
P (l)STFT∆(n, k + l)STFT

∗
∆(n, k − l).

(13)
where P (l) is the window function in the frequency
domain. Wider window means a better TF concen-
tration while a narrower window means a better cross-
terms interference suppression. Details on the win-
dow length determination can be found in [11].

• Realization of the quadratic CD class by using the
standard STFT was introduced in [12]. We define
the robust CDs as
rCD�(n, k) =

i
λi|STFT∆(n, k) ∗ω Qi(k)|2. (14)

In the above expression, λi represents the eigenval-
ues of the rotated kernel function in the time-lag do-
main of the particular member of the CD class, Qi(k)
represents the FT of the corresponding eigenvectors.
Details about this decomposition and its associated
quantities can be found in [12].

• The LWD, proposed in [7], is an appropriate tool for
nonlinear FM signals. This distribution can be eval-
uated recursively by using the WD or the SM. In a
similar way, we propose to evaluate its robust coun-
terpart based on the rWD or the rSM defined in (12)

and (13). We define the robust LWD by using the
recursive expression

rLWDL(n, k) =
N/2

l=−N/2 P (l)×

rLWDL/2(n, k + l)rLWDL/2(n, k − l), (15)

where rLWD1(n, k) = rWD(n, k) or rLWD1(n, k) =
rSM(n, k).

• The PWVD is a TF distribution proposed to deal
with polynomial FM signals. For multicomponent
signals, this distribution suffers from the presence of
cross-terms. To mitigate this problem, an implemen-
tation procedure for the fourth order PWVD was pro-
posed in [13]. Its robust counterpart can be defined
as
rPWVD(n, k) =

l
P (l)×

rLWD2(n, k + l)rWD(n, k + [l/A]), (16)

where A = 0.85/1.35 and [·] denotes rounding to the
closest integer value.

5. IF ESTIMATION

We consider the signal f(t) = exp(j256πt3 − j192πt), t ∈
[−1, 1]. Sampling rate is ∆t = 1/512. Signal is embed-
ded in an impulse noise, a cube of the Gaussian noise,
ν(t) = (σν1(t))

3 + j(σν2(t))
3, where νi(t), i = 1, 2 are mu-

tually independent white Gaussian noises E{νi(t)} = 0 and
E{νi(t)νj(t)} = δ(i−j), while σ is a noise amount. Various
STFT forms, the robust WD calculated by using minimiza-
tion problem (2) and the robust SM evaluated by using (13),
are compared in the IF estimation. The IF estimation has
been formed as

ω̂(n) = ω̂m(n) + δ(n)

where ω̂m(n) is estimation based on the maxima of the TF
representation:

ω̂m(n) = ∆ωk̂m(n), k̂m(n) = argmax
k
TF (n, k)

where ∆ω is the frequency step considered, while the so-
called displacement is:

δ(n) =
[Q1(n)−Q−1(n)]

2[2Q0(n)−Q1(n)−Q−1(n)]∆ω

where Qi(n) = TF (t, k̂m(n)+ i). Note that this simple dis-
placement is based on quadratic interpolation of the TFD
around its maxima. The displacement is introduced in or-
der to reduce effects of frequency discretization. Other dis-
placement forms can be found in [14].

Various STFT forms are compared for different noise
amounts in Fig1.a. It can be seen that the robust STFT
forms, even for a light amount of noise, outperform the stan-
dard STFT form. Also, it can be seen that corresponding
robust forms produce very similar results (i.e., the robust
STFT evaluated by using the L-filter in each point of the
TF plane, produces almost the same results as the robust
STFT evaluated recursively with the L-filter form of the
robust STFT in the initial stage). The robust STFT is
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Fig. 1. MSE in the IF estimation by using: (a) STFT
forms; (b) L-filter forms of the robust STFT, WD and SM.

compared with the robust WD calculated by using mini-
mization problem (2) and the SM (13), Fig.1b. It can be
seen that the robust WD outperforms the robust STFT for
a weak noise but it is worse than the robust STFT for a
higher noise. At the same time the robust SM outperforms
both the robust STFT and the robust WD for all noise
amounts.

6. CONCLUSION

Overview of the robust TFDs is presented in this paper.
In order to reduce significant calculation complexity, inher-
ited in sorting and iterative procedures used to calculate
of the robust STFT, we proposed a recursive realization
of the robust STFT. It is slightly more demanding than
the recursive realization of the standard STFT. Further-
more, the robust higher-order TFDs can be calculated by
using the robust STFT. In this paper we presented a brief
comparison of the STFT forms with the robust WD and
the robust SM in the IF estimation. A detailed calcula-
tion study will be reported later. Recently, several other
TFDs based approaches have been used for the FM signals
parameter estimation in the case of impulse noise environ-
ment (see [15]). These methods are based on the fractional
lower order moments [16]. However, calculation savings,
as compared to the signal parameters estimation based on
the proposed recursive realization of the robust TFDs, are
not significant. Since the robust STFTs are accurate esti-
mates of the standard STFT, they are suitable for analysis
of multicomponent signals, while the fractional lower order
moments could be inaccurate in this case.
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