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ABSTRACT

Inspired by the maximum likelihood (ML) estimates of loca-
tion in multivariate spaces, we introduce in this paper a new
filtering structure capable of capturing and exploiting both
spatial and cross-channel correlations embedded in the data.
An adaptive optimization algorithm for a sub-optimal real-
ization of the proposed generalized vector median (GVM)
filter, namely the marginal GVM, is derived. The effective-
ness of the algorithm is shown through a color image denois-
ing experiment.

1. INTRODUCTION

The vector median (VM) proposed by Astola et. al [1] in
1990 has received considerable attention in signal processing
research. Their approach is based on the concept of reduced
ordering [2], overcoming the limitation (inexistence) of nat-
ural ordering in a multivariate space. The vector median of N
multivariate samples X1,X>, - - -, Xy, thus, computes the min-
imum sum of L; distances from the output candidate to all
other multivariate samples in the observation window. Since
the minimum of the above cost function cannot be computed
easily but by searching or approximations [1], a simple ap-
proach is to define the output of the vector median as one of
the input vectors which minimizes the sum of distances. The
output can thus be written as

N
Y =argmin ) [[X — X[ (1)
Xe{X;i} i=1
where || -||; denotes the L; norm. In order to expand the

capabilities of the vector median, the weighted vector me-
dian (WVM) was introduced as a direct extension [4]. Here,
a weighted cost function is defined where the L; distances
are first weighted by a non-negative scalar before they are
summed to form the cost function

N
Y =argmin )" WX — Xi; . 2
Xe{X;} i=1

Although the WVM in (2) can be further extended to a
more general form that accepts negative weights as well as
positive ones with “sign coupling” weighting [3], the prin-
ciples of parameter estimation reveal that the limitations of
the weighted vector median reside in its very structure. We
show that Astola’s vector median is derived from the max-
imum likelihood (ML) estimation of location for indepen-
dent and identically distributed (i.i.d.) vector-valued samples
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obeying a Laplacian distribution. The weighted vector me-
dian, in turn, emerges from the location estimate of indepen-
dent (but not identically distributed) vector valued samples,
where only the scale of each input vector sample varies. The
multi-channel components of each sample are, however, still
considered mutually independent in both cases. Weighted
vector medians, as defined in (2), are thus severely limited
as the cross-channel correlation structure, inherently present
in most multi-channel applications, cannot be exploited. In
short, the vector median in [1] is spatially blind and cross-
channel blind. Similarly, the weighted vector median in [4]
is cross-channel blind.

This paper focuses on developing more general multi-
variate median filter structures that are capable of captur-
ing and exploiting spatial and cross-channel correlations em-
bedded in the data. We start by revisiting the multivariate
location estimate of samples that are assumed to be mutu-
ally correlated across channels but that are assumed indepen-
dent (but not identical) in time/space. This model leads to
a multivariate median structure that is computationally sim-
ple, yet it exploits cross-channel information. The structure
is also amenable to “sign coupling” weighting and thus can
be adapted to admit positive and negative weights.

Having the new generalized vector median (GVM) filter
structure defined in Section 3, our attention then focuses on
the weight optimization. In Section 4, the adaptive algorithm
for the marginal GVM filter is presented. To verify the valid-
ity of the algorithm, a color image denoising example with
salt and pepper noise is introduced in Section 5, where the
advantages of the newly proposed GVM method are shown.

2. STATISTICAL FOUNDATION

Filtering and parameter estimation are intimately related. It
is well known that, in the univariate case, the optimal linear
filter and the optimal median filter arise from the maximum
likelihood estimate of location under Gaussian and Lapla-
cian statistics, respectively. Consider a set of independent,
univariate samples {X;} each obeying a Gaussian distribu-
tion but with a different variance Gi2. The ML estimate of
location in this case is equivalent to the minimizer of the fol-
lowing function
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with W; = 61»2 > 0, which is a normalized version of a FIR
filter

Y =

N
WiX; .

i=1

A similar link between filtering and maximum likelihood
(ML) estimation can be found when the univariate samples
obey independent but not identical Laplacian distributions.
The ML estimate of location now minimizes

Mo
Gl(u):Zngﬁul,

i=1"i

which can be calculated by the popular nonlinear operation
known as the weighted median

fi = MED(W;oX;|Y))

with the limitation of W; > 0. The generalized version which
has band-pass and high-pass capabilities by accepting nega-
tive weights is further formulated in [3] as

Y = MED(|Wi| o sgn(Wy)X;[\)),

where sgn(x) = 1 when x > 0 and sgn(x) = 0 otherwise.

It is shown next that, a similar relationship between the
ML estimation and filtering can also be set up in the multi-
variate case.

3. NEW MULTIVARIATE FILTERING STRUCTURE

The notation used hereafter is clarified first. The letter M
represents the dimension of the multivariate data, N the filter
length, and L the sample size. The filter input vector is de-
noted as X = [X; X --- Xy|T , where X; = [X! X? ... XM]T
is the i-th M-variate sample in the filter window. The fil-
ter output is ¥ = [Y'! Y2 ... YM]T. Throughout the paper,
only the vectors in time (or spatial) domain are denoted us-
ing boldface letters, vectors in the spectral domain are rep-
resented in regular font. Also, vectors from two domains do
not allow traditional vector operations such as addition, and
inner product.

Consider a set of independent but not identically dis-
tributed samples, each obeying a joint Gaussian distribution
with the same vector location parameter U,

(X;) = % 6*%(Xi*H)TCf1(Xi*ﬂ),
(27) > |GiJ2

where X; and u are all M-variate column vectors, and C; is

the cross-channel M x M correlation matrix of the sample

X;. The maximum likelihood estimate of location y can be

derived as
N “1/N
p=(Yc! Yc'x ).
i=1 i=1

Just like in the univariate case, a general filtering structure
for multivariate data can thus be inspired from the above ML
estimate of location

wX;

N
Y:

i=1

where W; = (Wiﬂ)MxM and there is a total of N different
weight matrices. A corresponding optimization algorithm for
this filtering structure can be easily developed, but its short-
coming is obvious: the number of weights could be unbear-
ably large. For instance, for a 3-channel color image with a
window size 5x5, we need 225 weights to perform the filter-
ing operation.

Fortunately, in many multi-channel applications such as
color imaging, remote sensing, array processing, etc., the sig-
nals from sub-channels are often highly correlated. Hence, it
is possible to utilize this cross-channel correlation structure
to reduce filter complexity. Moreover, this correlation struc-
ture between sub-channels may often be stationary or at least
quasi-stationary for a period of time. In these cases, it can
be assumed that the correlation matrices C; within the obser-
vation window differ only by scale factors. This relationship
can be stated as

G '=aC,

where the scalars ¢; > 0 for i = 1,2,---,N. Then, the corre-
sponding ML estimate of location is

N -1 N
= <Z%‘Cl> (Z%‘Clxi,>
i=1 i=1

where ():fvzl qC _1)7] is a normalizing matrix and
( N, ¢iC7'X;) is the inherent filter structure.  Note
that though the correlation matrix C in the ML estimation
for pt can be cancelled out, the essence of the multivariate
filtering resides in ( f\’: 1 q,-C’lX,-) which leads us to the new
filtering structure formulated as

N<
I
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N
viwTx; (3)
=1
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i=1 M
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where the weights V; and W/ all take on real values. For
obvious reasons, V = [V} V, --- Vy|T is referred to as the
time/spatial dependent weight vector, and W = (W/') 1, as
the cross-channel weight matrix.

Though it is mathematically intractable to derive a sim-
ilar result as in (3) from a multivariate Laplacian distribu-
tion since it involves special functions such as Bessel and
Gamma, by analogy, we define a powerful nonlinear mul-
tivariate filter by first replacing the summations in (4) with
median operators and then incorporating the “sign coupling”
accordingly. The newly formulated filter is referred to as the
generalized vector median (GVM) shown as follows

Y = MED(|V;| osgn(Vi)Q: |Y.), ()
where
MED(|W/!| o sgn(Wih)X/ 1))

Qi = :
MED(|W M| osgn(W/M)X/ IL))
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is an M-variate vector. It is clear to see that, if we set W to
be the identity matrix and confine V; to be positive only, then
the GVM filter in (5) will reduce to the traditional weighted
vector median which is cross-channel blind. Moreover, if we
further set all V; to be the same value, the filter then becomes
Astola’s VM which is time/spatial blind as well.

Since the median of a set of vectors is not uniquely de-
fined [2], the GVM filter in (5) may have different inter-
pretations and implementations. Moreover, among all the
approaches available in the literature [6], none of them has
a closed form formula, which makes the filter optimization
cumbersome. To circumvent the obstacle of optimizing this
filter, we propose a sub-optimal implementation referred to
as the marginal GVM, where the outer median in (5) is re-
placed by a vector of marginal medians each with the same
weight vector V

MED(Y (V)01 1)
MED(|V\<>SgH( D07 i)

= ; (6)
MED(|Vi|<>SgH(Vi)Qf” 1)

where Q! = MED(|W /| osgn(Wﬂ)XlJ Dfori=1,--- M.

Now using this structure to filter a color image with a 5 x 5
window, we only need 34 weights.

4. FILTER OPTIMIZATION

Assume that the observed process X (n) is statistically related
to a desired process D(n) of interest, that is typically consid-
ered a transformed or corrupted version of D(n). The filter
input vector at time n is

X (n) = [X1(n) Xa(n) - Xy(n))",

where X;(n) = [X!(n) X?(n) -~ X™(n)]" is an M-variate
sample. The desired signal at time n is D(n) = [D'(n) D?(n)
- DM(n)]T. From (6), the output of the marginal general-

ized vector median filter is denoted as D = [D! D? ... DM]T
where
D' =MED(|Vilosgn(V)Q; [X,) 1=1,--- .M. (7)

Applying the real-valued threshold decomposition technique
[3], we can rewrite (7) making it an analyzable function as
follows,

L 1 r
Dl = 3 /sgn(VaTGpl)dpl»
where V, = [[Vi| V2| --- [Ww|]T

sgn(sgn(Vw)Qy — p')" -

|[WMI|T | and

G = [sgn(sgn(Vl)Qll fpl)

Similarly, by defining W! = [[W!| W% ...

!
S; = [sgn(sgn(W'") X/ —qi) -~ sgn(sgn(W"")x} —gp)]",

the inner weighted medians will have the following thresh-
olded representations

0, =3 /sgn TSq’ l.

Under the Mean Li-norm (ML1) criterion, the cost func-
tion to be minimized is

(VW) =E{|D—DII1}=E{[ZW:|D1—DII}- (®)

=1

Following similar arguments as in [3], the derivative of (8)
with respect to V; can be approximated by the following sum-
mation

1 P 2vT b P [
EZ E{e sech”(V, G” )sgn(V;)G! }dp,
=1

where e = sgn(D!' — p!) — sgn(VIG”'), and Gf’l =
sgn(sgn(V;)Q! — p) fori=1,---,N.

Using the instantaneous estimate for the gradient, and ap-
plying the approximation technique used in [3], we obtain the
adaptive algorithm for the time dependent weight vector V
in the marginal GVM filter as follows,

"GP, O
G?M]T and Giﬁl = sgn(sgn(V;) Q! — DY)

Vi(n+1) = Vi(n) + usgn(Vi(n))e
where GD [GD b
forl = 1

After some mathematical manipulations and approxima-
tions, the adaptive algorithm for the cross-channel weight
matrix W in the marginal GVM filter can be simplified as
follows

W* (n+1) = W (n) + wusgn(W* (n)e (n) (VT (n) A’ (n)), (10)
where A = [A] A AT, A = S(sen(V)Ql —
D')sgn(sgn(W*)X? — Q') fori=1,---,N, and

1 x=0
S(x) = { 0 otherwise .

V should be initialized as an all-1 vector in marginal
GVM.

5. SIMULATIONS

To test the performance of the GVM filter proposed in this
paper, the following experiment is executed.

A RGB color image contaminated with 10% correlated
salt and pepper noise is processed by the WVM filter, and the
marginal GVM filter separately. The observation window is
set to 3 x 3 and 5 x 5. The optimal weights for the marginal
GVM filter are first obtained by running the LML1 algorithm
derived in the previous section over a small part of the cor-
rupted image. The corresponding part of the clean image is
considered known to the algorithm. A similar procedure is
repeated when the Algorithm I developed in [5] is used to
optimize the weights of the WVM filter. The adaptation pa-
rameters are chosen in a way such that the average L;-norm
error obtained in the training process is close to its minimum
for each filter. The resulting weights are then passed to the
corresponding filters to denoise the whole image. The filter
outputs are depicted in Figure 1.

As a measure of the effectiveness of the filters, the av-
erage Li-norm error of the outputs was calculated for each
filter, the results are summarized in Table 1. Peak signal-to-
noise ratio (PSNR) was also used to evaluate the fidelity of
the two filtered images.
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Figure 1: Multivariate medians for color images in salt
and pepper noise, y = 0.001 for WVM, u,,u,, = 0.05
for marginal GVM. From left to right and top to bottom:
noiseless image, contaminated image, marginal GVM with
3x3 window, WVM with 3x3 window, marginal GVM 3x3,
WVM 5x5.

The statistics in Table 1 show that the marginal GVM fil-
ter outperforms the WVM filter in this color image denoising
simulation by a factor of 3 in terms of the average L;-norm
error, or 8-11dB in terms of PSNR. Moreover, the output of
the marginal GVM filter is almost salt and pepper noise free.
As a comparison, the output of the WVM filter is visually
less pleasant with many unfiltered outliers. Notice that the
output of the marginal GVM filter with the 3x3 observation
window preserves more image details than that of the 5x5 re-
alization, and has a better PSNR though the average L;-norm
errors in the two cases are roughly the same.

Table 1: Average ML1 and PSNR of the output images.

Filter ML1 PSNR (dB)
3x3 5x5 3x3 5x5
Noisy signal 0.1506 14.04
WVM 0.0748 0,0732 21.75 23.33

marginal GVM  0.0248  0.0247 32.60 30.61

6. CONCLUSIONS

A novel multivariate median filter was proposed for color
image applications. The corresponding optimal filter de-
sign was derived. The simulation on color image denoising
shows the superiority of the new structure over the traditional
weighted vector median filter.
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