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ABSTRACT 

This article deals with application of signal processing and 
chemometric techniques to fluorescence spectroscopy. Re-
corded spectra of pure components in this field are charac-
terized by very large peaks and come from a mixture of pure 
elements. It may be quite difficult to reconstruct the pure 
components spectra because of their mutually statistically 
dependence. We have decided to analyse existing techniques 
to resolve this problem. 

1. INTRODUCTION 

An important problem in chemistry and environmental sci-
ences is the so called inverse problem. During a chemical 
reaction between different chemical species, a difficult prob-
lem is to observe the spectra and the concentrations profiles 
of intermediate species that can be formed during the reac-
tion. The only available informations are spectra and con-
centrations of reactants and resultant products. 

The first method that comes to mind is to record the 
spectra of pure reactants and products, and to substract them 
from the spectrum of the mixtures by the use of a regression 
method. But pure chemical species are difficult to obtain 
because of impurities that cannot be totally excluded. Fur-
thermore, pure chemical species are not always available, 
being mixed with other components. 

It is thus necessary to develop techniques that  are not 
depending on knowledge of pure chemical species spectra. 

Since 1971 with Lawton and Sylvestre [1], pure compo-
nent spectra reconstruction is an important field of research. 
The aim is to estimate spectra of initial components from an 
observed set of additive mixtures. Their method was limited 
to the case of mixtures of two components. But their geomet-
rical approach was simple and based only on the use of posti-
tive constraints and normalisation of spectra. But good esti-
mation results encouraged people to continue this initial 
work.  

Among those persons, Ohta [2] extended this method to 
a three components system by the use of a MonteCarlo tech-
nique. But it was still not able to process a multidimensionnal 
problem. 

Sasaki, Kawata and Minami [3] were the first to propose 
a theoretical extension to this multicomponent problem. 
Their work is based on the use of maximization of entropy 
with positivity constraints. In practice, only two or three 

components problems lead to a good estimation of pure spec-
tra. 

The main drawback of those methods is their non-single 
solution philosophy. They return a band of possible solutions. 
Depending on the variety of the mixtures and the level of 
noise, band may be very large. The user is unable to predict 
the spectra of pure species. 

Several methods have been developed, for instance by 
Malinowsky [4] or Gemperline [5]. However they are not the 
widely used in spectroscopy from where the data used in this 
article come. 

Thus, in section 2, data, that need to be processed, will 
be introduced, and their properties extracted. From the last, 
potentially useful and widely used algorithms will be dis-
cribed in section 3, and their drawbacks analysed. On this 
base, Non-negative Matrix Factorization (NMF) will be 
shown in section 4 as being the most effective technique to 
process data used in this article, and results will be presented. 
Section 5 will conclude this article. 

2. FLUORESCENCE SPECTROSCOPIC DATA 

2.1 Experimental considerations 

Laser scanning microspectrofluorometry is used to collect 
the  fluorescence signals. Samples of durum wheat grains 
were chosen from a serie of triculum durum used for evalu-
ating the milling efficiency at INRA Montpellier (France). 
Transverse sections (60 µm) of the wheat grain were ob-
tained by soaking the grains 4 hours in distilled water and 
then embedded in ice in order to be sectioned with the freez-
ing microtome, which is an instrument to cut thin slices of a 
frozen sample. The microspectrofluorometer is equipped 
with a laser excitation at 365 nm and fluorescence signal 
emitted by the sample is collected on a CCD detector in the 
spectral interval 350 to 670 nm. In order to obtain an image, 
the laser scans an area of a several µm2 in a point by point 
mode at a spatial resolution of about 1 µm. A 20×20 meas-
urement matrix can thus be obtained ; each measurement 
consists of a 350 to 670 nm fluorescence spectrum. The 
original spectra are shown in figure 1. For clarity reasons, 
only 20 spectra randomly chosen among 400 are presented 
in the figure 1. 

The figure 2 represents the same spectra, but they are 
normalized. It is easy to point out that the low level spectra 
have a high level of noise. That is a difficulty to extract the 
sources without uncertainty. 
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Figure 1 : Original spectra. 

 
 
 

 
 
 
 
 

 
 

Figure 2 : Normalized spectra. 

2.2 Data model description 

According to physical laws governing fluorescence spectros-
copy, the spectrum of a chemical species results from the 
weighted sum of the spectra of the pure components. The 
weights are the concentration of each pure species in the 
mixtures. Moreover, no transmission delay is assumed. The 
data model is assumed to be instantaneous and linear : 

 SAX =  (1) 

where X is a ( LN × ) observed data matrix, S is a ( LM × ) 
unknown sources matrix, A is a ( MN × ) unknown mixing 
matrix corresponding to the concentration of each source in 
mixtures, N is the number of observed mixture spectra, M is 
the number of unknown sources and L is the number of 
points in each spectrum. 

A physical property of spectra is available and will be 
very useful in the following to identify S and A : the positiv-
ity of entries of matrices S and A. Thanks to those con-
straints, the space of the solutions will be reduced. Different 
approaches have been developed to deal with this factoriza-
tion problem. The aim is to find the matrices S and A that 
best fit the model described by equation (1). 

3. POTENTIALLY USEFUL ALGORITHMS 

3.1 MDF algorithm 

A biophysics group processed those fluorescence data with 
the help of their own algorithm : the Maximum Distance 
Factor (MDF) algorithm [6]. It is based on a deflation ap-
proach. Original spectra with maximal distance between 
them are considered as pure component spectra. Of course 
they satisfy the non-negativity restriction for intensity val-
ues, but do not for concentrations. An expanded procedure 
with iterative correction of the obtained spectra has been 

developed, leading to positive concentrations. Constraints 
are then respected. 

Good results have been obtained by application of MDF 
to fluorescence data, as can be seen in figure 3. Specialists 
can easily recognize the ferulic acid spectrum (n°1), the free 
ferulic acid spectrum (n°2) and the p-coumaric acid spectrum 
(n°3) which are represented in this figure. 
 
 
 
 
 
 
 
 

 
 
 

Figure 3 : Pure spectra estimated by MDF. 

 
 
 
 
 
 
 
 
 
 

Figure 4 : Normalized fluorescence spectrum 
of free ferulic acid. 

The effectiveness of this algorithm is observable thanks 
to the pure free ferulic acid spectrum that was measured in-
dependently of this experiment and that is available in fig-
ure 4. Comparison of the pure free ferulic acid spectrum and 
the estimated free ferulic acid spectrum confirms the good 
pure spectra extraction. 

Nevertheless, two drawbacks are noticeable. First, prac-
tically pure spectra of chemical species must be present in 
the data matrix X in order to provide good results. Second, 
the mathematical framework is not as straightforward as it 
could seem and involves heavy computational time. 

3.2 ICA algorithms 

The classical techniques of Independent Component Analy-
sis (ICA) [7, 8] have already been successfully applied to 
Raman spectroscopy [9]. But on the wheat grain spectra, the 
fundamental assumption (mutual statistical independence of 
sources) is not fulfilled. We know that pure component spec-
tra are quite similar, involving dependence structure between 
them. Application of standard ICA algorithm is useless. 
Wrong results will be sure obtained. 

However, a solution may appear with the transposition of 
the problem. If spectral sources are dependent, why not as-
sume the independence of concentrations? This interesting 
idea is unfortunately not realizable. The chemical species in a 
wheat grain are not randomly distributed. A wheat grain has a 
physical structure with different concentration areas. In fact, 
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knowing the concentration of one species allows to predict 
the concentration of the other ones. A dependence structure is 
still apparent. 

Of course non-negative constraints [10] should be used 
in order to reduce the space of the solutions, but it would lead 
to unrealistic solutions, as the underlying sources need to be 
still statistically independent. 

An interesting algorithm is the one proposed by 
Cichocki and Georgiev [10]. It assumes that the sources are 
dependent except for at least one frequency band. A standard 
ICA algorithm can be applied in this band of frequencies. But 
the difficulty of this technique is the localization of the fre-
quency domain in which the sources are mutually independ-
ent. Such an assumption is not conceivable for spectral data 
processed in this paper. 

3.3 PMF algorithm 

The Positive Matrix Factorization developed by Paatero [11] 
is another alternative to resolve the problem. It is based on 
the minimization of the Frobenius norm of the modelling 
error with constraints of positivity of elements of matrices S 
and A. It has been shown that this optimization problem is 
equivalent to a weighted least squares problem. This algo-
rithm has been very successful in environmental sciences and 
numerous applications are attributable to it. 

Nevertheless, three drawbacks are noticed: 
• The standard deviation of each entry of X needs to 

be known or to be quite well estimated by the user. 
In our case, this information is not available. An es-
timation of the standard deviation requires several 
experiments and the spectroscopic techniques are 
based to a single and fast measure. 

• Even if the global maximum is reached, a rotation 
of the solution is still left since  

 SATTAS 1−=  for every non-singular matrix T.  
 The user must specify this rotation to find the rele-

vant solution. 
• The computational cost is very expensive. 

All that was said before leads us to use a technique 
based on positivity of matrices S and A, but that avoids the 
drawbacks of methods mentionned above. Our choice was 
made on a new method developed by Lee and Seung and 
based on the Non-negative Matrix Factorization (NMF). 

4. NON-NEGATIVE MATRIX FACTORIZATION 

4.1 Definition 

Assuming there is no noise, the goal is to find non-negative 
matrix factors A and S that fulfilled the data model (1). The 
NMF methods only assume that the model spectra are non-
negative and allow only additive combinations in the matrix 
A of the concentrations [12]. 

The constraint of non-subtractive combinations is of a 
great importance, because it corresponds more to the classi-
cal idea of the mixing of physical components. Each observa-
tion is only a positive weighted sum of the model spectra. 

We have to define a cost function that quantifies the 
quality of the approximation. The simplest way is to measure 
the Euclidian distance between the two matrices X and SA.  
[13]. This distance is defined by: 

 2ASXD −= . (2) 

Lee and Seung have proposed some “multiplicative update 
rules” for A and S with a good compromise between speed 
and easiness of implementation for solving this minimization 
problem. Those rules are transcribed in equation (3) : 
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The Euclidian distance is not the only cost function; an other 
one based on the Kullback-Leibler divergence may be used. 
Nevertheless, simulations give similar results, and the choice 
of the Euclidian distance was arbitrary. 

4.2 Application of NMF to fluorescence spectroscopy 

Tests have been run on data described in section 2 with a 
sources number which is variable. Wrong results were ob-
tained with two or four sources. A model with three sources 
gave a perfect restitution of the spectrum of free ferulic acid. 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5 : Pure spectra estimated by NMF. 

 
 
 
 
 
 
 
 
 

 
Figure 6 : Comparison of original and estimated spectra. 

 
Figure 5 shows estimated pure spectra obtained by ap-

plication of NMF with a 3 sources model. Results are similar 
to those obtained with the MDF algorithm (figure 3).  
Figure 6 compares normalized a priori free ferulic acid spec-
trum with estimated free ferulic spectrum. 
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Figure 7 : Distribution and concentration of the chemical species in a wheat grain section  
(1) bound ferulic acid, (2) free ferulic acid, (3) p-coumaric acid. 

After the determination of the three chemical species, 
their distribution and concentration can be visualized in the 
wheat sample using chemical maps. Each image corresponds 
to a column of the estimated mixing matrix. Figure 7 shows 
the spatial distribution of the different species. The 
concentration scale decreases from black to white. It can be 
noticed that the bound ferulic acid is concentrated at the pe-
riphery of the wheat grain, while its free form is mainly at the 
middle of the grain. As one can see on figure 7, the correla-
tion between the concentrations is the reason why the ICA 
techniques don’t give good results on the transposed data. 
The NMF method does not take into account the independ-
ence of the signals in the search for solutions, but is based on 
the positivity of estimated spectra intensity and estimated 
components concentrations, and thus seems to be more suited 
for the study of this type of signals. 

5. CONCLUSION 

In chemical terms, the results of the NMF methods, applied 
to the characterization and fluorescence chemical mapping of 
wheat grain sections, show that the first species characterizes 
the aleurone layer. It can be used as a meaningful indicator of 
the non-endosperm tissues of the grain in order to character-
ize and estimate aleurone contamination in different mill-
streams. 

The NMF method has shown its effectiveness to deal 
with problems that can not be easily solved by the applica-
tion of the classical methods of BSS. This opens the way to 
an interesting and innovative way of research which relates to 
the introduction of positivity constraints into the procedure of 
sources separation. 
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