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ABSTRACT

In this paper we address the problem of instantaneous fre-
quency (IF) estimation of multicomponent chirp signals in
impulsive a-stable noise environment. Three new paramet-
ric techniques are introduced first based on robust versions
of the MUSIC algorithm using truncated data (TRUNC-
MUSIC), robust covariance estimate (ROCOV-MUSIC) and
generalized covariation coefficients which are a fractional
lower order statistics (FLOS-MUSIC), respectively. These
methods are compared with a new proposed method based
on “robust” time-frequency signal analysis.

I. INTRODUCTION

This paper is concerned with the analysis of multicompo-
nent linear frequency-modulated (FM) signals, corrupted
by heavy-tailed a-stable noise. This kind of signal, also
known as chirp signals, arises in many engineering applica-
tions such as radar, sonar, telecommunications, automotive
signal analysis and biomedical engineering. A concept in-
timately related to mono-component FM signals is that of
instantaneous frequency (IF) [2]. In many situations, the
IF characterizes important physical parameters of the sig-
nal. Diverse IF estimation methods have been developed
for mono or multi components signals embedded in additive
noise [7]. A well-known class of non-parametric methods,
for IF estimation, is based on the time-frequency distribu-
tions of the signal [2], [3], [4]. On the other hand, para-
metric methods exploit a polynomial phase representation
of the FM signals to achieve IF estimation through the esti-
mation of the polynomial phase parameters [7]. Analysis of
non-stationary signals affected by additive Gaussian noise
has been addressed in details in several places [3]. There are
many situations wherein the Gaussian assumption does not
hold. Here, we consider noise processes characterized by
infrequent but high amplitude events. This kind of noise,
also known as impulsive noise, can be encountered in many
engineering applications [6]. Modeling spikes or impulsive
events by Gaussian models will lead to poor estimation and
detection performances. A class of distributions adopted
by the signal processing community to model the statistical
behavior of impulsive processes is the heavy-tailed distribu-
tions class. Examples of heavy-tailed distributions include
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Laplace, Cauchy and a-stable distributions with o < 2.
Modeling of impulsive random processes by the a-stable
statistics has been shown to be an effective tool in modern
statistical signal processing [6]. Theoretical justifications
for using the stable distribution as a basic statistical mod-
eling tool come from the Generalized Central Limit Theorem
(GCLT) [6]. Another defining feature of the stable distribu-
tion is the so-called stability property, which says that the
sum of independent stable random variables with the same
characteristic exponent is again stable and has the same
characteristic exponent.

Unfortunately, standard techniques for parameter estima-
tion such as the maximum likelihood (ML) or time-frequency
based methods are not easily implemented or present poor
performances in the a-stable case. Consequently, it is im-
portant to have suitable IF estimation methods dedicated
to the impulsive noise context. The objective of this paper
is to study this particular problem by parametric and non
parametric time-frequency-based methods.

II. PROBLEM STATEMENT

Consider a multicomponent chirp signal given by:

I

z(t) = Zsi(t) + zo0(t) = Zai(t) cos{pi(t)} + z0(t) (1)

i=1

where t = 0,...,N — 1, ¢;(t) = 2r(fit + 6;t*) + 6; is the
phase of the ith chirp component. f;,d;,i =1,...,I are un-
known real coefficients. {f;,¢ =1,---,I} are realizations of
random variables; distributed uniformly and independently
over [0,27). N is the sample size and I is the number
of components of the observed signal. The amplitudes a;(t
are assumed a-stable, independent from the noise term zo (¢
and with location parameters a; # 0 and dispersions ~;.
The random noise zo(t) is modeled as a symmetric with
zero location parameter a-stable process (SaS). The SaS
do not have closed form probability density function (pdf)
except for the cases a = 1 (Cauchy distribution) and a = 2
(Gaussian distribution). The Sa.S pdf is defined by means
of its characteristic function v (t) = exp{jat —v|t|*}, where
a (0 < a < 2) is the characteristic exponent, controlling the
heaviness of the pdf tail, y(y > 0) is the dispersion, which
plays an analogous role to the variance, and a is the loca-
tion parameter, the symmetry axis of the pdf. Due to their
heavy tail, stable distributions do not have finite second or
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higher-order moments, except for the case of o = 2.
Our primary interest is to estimate the instantaneous fre-
quency IF; of each signal component s;.

1

By decomposing a;(t) = v ai,o(t) + a; where a;,0(t) being
a standard (zero location parameter and unit dispersion)
a-stable process, we can re-write the signal expression as

I I,
a(t) = Y aicos{hi(t)} + Y v aio(t)cos{di(t)} + zo(t)
i=1 i=1

z(t)

I
= > aicos{i(t)} + (1)
i=1

where z(t) is an a-stable process according to the stability
property [6]. Thus, the problem of estimation (IF})i1<i<s of
the multicomponent chirp signal affected by multiplicative
and additive a-stable noise is reduced to that of estimating
(IF;)1<i<r of a constant amplitude chirp signals, i.e. having
the same IF laws as the original signals, but affected by the
additive noise only.

III. PARAMETRIC IF ESTIMATION

This section introduces three parametric methods for IF
estimation robust to impulsive noise.

ITI-1. IF estimation of linear FM signals

Consider the quadratic phase estimation of the signal z(t) in
Eq.(1). The first step consists in transforming the quadratic
phase on linear phase using the polynomial transform [7]:

y(t) = a(t+7)x(t) (2)

= Z |a;| cos{2m(2r0it) + @i} + 2'(t)  (3)

where 7 is the delay parameter (to choose preferably in
(5, 2, @i = 2n(7 fi +7°6;) and 2" (t) is the term of noise
plus interferences." Now we apply one of the proposed al-
gorithms in section III.2 to y(t) to estimate the parame-
ters 8;,4 =1,...,I;. 2 In order to estimate the parameters
fi,i=1,...,1, we consider the demodulation of the signal
as follows: For i =1,...,I;, we compute

eD(t) = 2(t) exp(—j2mdit®)
Z exp{2jm(frt) + 6:} + w(t)

keJ;

Q

where J; is thp set of component indices with the same
coefficient d;, 0; is the estimate of §;, ®(¢) is the analytic
signal of z(t), and w(t) represents noise plus interference.
For each demodulated signal, we estimate the frequencies
{fr, k € J;} using one of the proposed algorithms (see
section IIL.2) applied to the real part of the demodulated
signal  R{z"(t)}. Note that it is not necessary to use a
high resolution method in the case where J; contains one
single signal index.

INote that 21 (¢) is an impulsive noise but not necessarily Sa.S.

2We might have I1 < I in the case where certain chirp com-
ponents of the signal have the same phase coefficients §; but
different coefficients f;.

ITI-2. IF estimation of sinusoidal signals

In this section, we address the frequency estimation prob-
lem of multicomponent sinusoidal signals observed in impul-
sive noise environment given by equation (1) with ¢;(t) =
2m fit+0;. We propose to apply the high resolution subspace
algorithm MUSIC (Multiple Signal Classification) [1] for the
frequency estimation. As the performance of the standard
MUSIC algorithm based on the sample covariance matrix
degrades if the underlying noise is impulsive, we propose
to apply MUSIC in the following three ways: (i) In the
first one, we apply MUSIC to the truncated harmonic sig-
nal, (ii) in the second one, we apply MUSIC to the robust
covariance estimate of the harmonic signal and (%) in the
third one, we apply MUSIC to the generalized covariation
function of the signal.

I11-2-1. TRUNC-MUSIC

In a-stable environment, the use of sample covariance is
no longer appropriate for frequency estimation due to the
infinite variance of the noise. To avoid this difficulty, we
propose to truncate in amplitude the ‘large-valued’ obser-
vations that represent “large” impulsive noise realizations
and apply MUSIC to the finite covariance matrix of the
truncated process. TRUNC-MUSIC (TRUNC stands for
truncation) can be summarized as follows:

e Choice of a truncation constant K: We propose to
compute the histogram of observations and choose K
such that [ K, K] contains 90 % of the data.

e Pre-Processing: We truncate the signal according to:

o z(t) it |z(t) |<KK
B(t) = { sign[z(t)]K if | z(t) |[> K

e Frequency estimation: Apply MUSIC algorithm to
the covariance matrix of the truncated signal Z(t) .

III-2-2. ROCOV-MUSIC

Huber considered the parameter estimation problem in the
presence of outliers or impulsive noise and proposed the
concept of M-estimation [5]. In this subsection, we con-
sider M-estimates for the signal auto-covariance function

(k) 4 E[z(t + k)z(t)]. Note that the robust autocovari-
ance estimation is equivalent to the robust variance estima-
tion according to E(XY) = $[Var(X +Y) — Var(X —Y)]
where Var is the variance. For an a-stable distribution we
have infinite variance, for that we propose to first truncate
the observations using a large valued constant K > 1. The
M-estimator of the variance o is a solution of the following
equation [5]

LS, 2@ o
~ Z u(d;) P u(d;) =0 (4)
where d? = ”i# is the Mahalanobis quadratic distance and

u is a weighting function defined in IR*. The existence and
uniqueness of the solution of Eq.(4) was shown by Huber
[5] under mild assumptions about the weighting function
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such as boundedness and continuity. This function are typ-
ically chosen such that observations coming from the tails of
the assumed contaminated distribution are down-weighted.
Here, we use the robust non-descending weighting function
which is based on Huber’s minimax function [5]. We can
compute the M-estimate of the variance as a solution of the
latter equation [5]. Thus, the algorithm ROCOV-MUSIC
proceeds as follows:

e Compute the M-estimates Y(k), k =0,...,L —1 us-
ing the M-estimator of the variance of [z(t+k)+z(t)]
and [z(t + k) — z(t)] through the following so called
ROCOV algorithm:

1. Initialize the ROCOV algorithm by the stan-
dard variance estimator o3 = ZZ].V:T)I z? (i),

2. At the (j + 1)th iteration compute
N-1

> wiizt(i)
i=0

N-1

> wig =1
=0

wig = uldig) = widij)/dij, d2; = 28, w s
the Huber function given by w(d) = min(d, k)
and k is a suitable constant.

3. Stop the ROCOV algorithm when the error is
smaller than a given threshold e.

2 —_— .
Oj+1 = ;

e Apply MUSIC to the robust covariance matrix esti-
mate I'y = Toeplitz[§(k)o<k<r—1] for the frequency
estimation.

I11-2-3. FLOS-MUSIC

In this section we propose to use the fractional lower order
statistics (FLOS) of the signal for the frequency estimation.
We consider an L x L generalized covariation coefficient
(GCC) matrix I', whose (n,[)th entry is given by [1]:

Elz(n)z(1) <P 7]

m).e
L Bz ]

N CORIOI N

1<p<a (5

where z<P7'> = |z|""!sign(x). It has been shown in [1]
that
I
R Z ni cos{2n fi(n — 1)} + P.0n (6)
i=1
where {n;,i =1,---,I} are positive real constants depend-

ing on « and a;, P, is a real constant depending on noise pdf
and d,, is the Kronecker coefficient. In practice, an estimate
of I, ; (for p =1) is given by

N—M+1
Z z(n+i—1)sign(z(l +¢— 1))
- i=1
Doy = — N—M+1 (7)

oo Jal+i-1)]

i=1

Equation (6) shows that we can obtain the frequency es-
timates by applying MUSIC algorithm to the GCC-matrix
I'. This algorithm is referred to as FLOS-MUSIC [1].

IV. TIME-FREQUENCY IF ESTIMATION

Signal time-frequency analysis has proved to be a powerful
tool in the analysis of non-stationary FM signals. In the
time-frequency representation, the noise energy is spread
over all time-frequency domain while the component en-
ergies are well localized around their respective IFs lead-
ing to high energy peaks for the latter. However, in the
heavy-tailed noise case, to get a good performances, we
need a pre-processing of the signal to attenuate the im-
pulsive noise effect. In [3], a robust TFD-based technique
has been proposed for IF estimation of mono-component
FM signal. Here, we propose to generalize this approach to
the multicomponent case according to the following steps:

Pre-Processing: The first step consists in reducing the im-
pulsive noise amplitudes in order to improve the SNR. To
do so, two solution might be suggested.

o Compressing technique: We propose here to pass the
noisy signal through a nonlinear device that com-
presses the large amplitudes (i.e., reduces the dy-
namic range of the noisy signal) before further anal-
ysis [2]. The output of the nonlinear device, is ex-
pressed as

&(t) = |2 (t)|" signlz(t)]
where 0 < B < 1 is a real coefficient that controls
the amount of compression applied to the input noisy
signal x(t).

o Truncating technique: In this case, we apply the trun-
cating technique which is presented in TRUNC-MUSIC
algorithm (section III-2-1).

Time-Frequency distribution: The choice of a TFD depends
on the specific application at hand and the representation
properties that are desirable for this application. In order to
separate the signal components and estimate their IFs, we
need to have a “clean” TFD. That is, we need a distribution
that can reveal the features of the multicomponent signal
as clearly as possible (with reduced cross-terms energy).
In this work, we have used the modified B-distribution [4]
given by:

S(t, f) = //jw Gop @)=t + 2)z" (= = D))e 2 T ar'ar

where G{;5(t") = Coshk(%, 0 <o <1is areal parameter
that controls the tradeoff between component’s resolution
and cross-terms suppression and k, = I'(2¢) /(227 1) (0)
is the normalizing factor (I'(.) stands for the gamma func-
tion). The choice of the MB-distribution, stems from the
fact that it presents a good performance in terms of resolu-

tion and cross-terms suppression [4].

Component separation & IF estimation: In [3] an algorithm
that separates the signal components and estimate their re-
spective IF laws from the signal TFD, has been presented.
Here, we propose to apply this algorithm to the TED of the
pre-processed signal Z(t). In order to compare the estima-
tion performance with the previously presented parametric
methods, we use a simple polynomial fit (in the least squares
sense) to extract the phase parameters (f;,d;) from the ith
component IF estimate.
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V. PERFORMANCE EVALUATION &
COMPARISON

In this section, a comparative study of the previous IF es-
timation methods of multicomponent chirp signal is ad-
dressed. For this purpose, we consider a mixture of two
chirp components of the same amplitude a; = az = 1, with
f1 =10.05, f» =0.3, 61 = 0.0001 and 6> = 0.0003 embedded
in impulsive a-stable noise with parameter exponent o = 1.
The estimation performance is measured by the normalized
MSE defined by

NMSE =

Z 16 —611*
1611

where 6 is the considered parameter, 6, is the estimate of
f at the rth experiment and N, is the number of Monte-
Carlo runs chosen here equal to 500. For the non-parametric
TFD-based method, we propose the compressing technique
with parameter 8 = 0.1 (we chose o = 0.01 for the MB-
distribution kernel).

Figures 1 and 2 represent the NMSE of the phase param-
eters versus the sample size and the noise dispersion, re-
spectively. In this simulation context, the best results are
obtained by the non-parametric method followed by the
parametric method based on robust covariance estimation
(ROCOV-MUSIC).
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Figure 1: Normalized MSE of the various phase parameters
versus sample size, v = 0.1.

VI. CONCLUSION

In this paper, several methods for IF estimation in heavy-
tailed noise are introduced. New non-parametric method
based on a pre-processing stage and on the signal TFD
was proposed and compared with the proposed paramet-
ric methods based, respectively, on signal truncation, ro-
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Figure 2: Normalized MSE of the various phase parameters
versus noise dispersion in dB, N=1000.

bust covariance estimation and generalized covariation co-
efficients. Simulations results are presented to validate our
IF estimation methods. In the considered simulation con-
text, the comparative study shows the superiority of the
non-parametric (TFD-based) method and the parametric
method using the robust covariance estimation technique
(ROCOV-MUSIC).
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