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ABSTRACT

Periodical watermark embedding has been especially
proposed to cope with geometrical attacks. Using a di-
versity approach, this method allows to decrease the
probability of error in the case of additive attacks. It
is usually admitted that the worst additive attack con-
sists in the addition of additive white Gaussian noise
(AWGN). However, our theoretical capacity analysis of
periodical watermarking demonstrates that periodical
AWGN in the optimal attacking strategy leads to more
significant drop of the capacity than AWGN test channel
from rate distortion.

1. INTRODUCTION

Watermarking has emerged as a means of addressing
intellectual property and security issues in the context
of digital media dissemination. For this purpose, a
trade-off between watermark invisibility and robustness
to intentional/unintentional attacks should be resolved
assuming that sufficient information-theoretic require-
ments are satisfied. A security-capacity analysis should
also be performed to examine possible security leakages.

Geometrical attacks, including translation, cropping,
rotation, scaling, change of aspect ratio, shearing or gen-
eral affine transforms, are of particular importance for
practical robust watermarking. Without the need for
signal removal, this type of distortions leads to a change
of the channel state by signal de-synchronization.

There are several methods proposed for watermark
recovery under geometrical attacks. They can be classi-
fied in three groups:
• methods that are performed in a fully transform

invariant domain. In these methods, the Fourier-
Mellin transform is applied to the magnitude of the
host image spectrum with a log-log or log-polar co-
ordinate mapping [1];

• methods that use extra synchronization templates.
In these methods, template points are estimated in
the FFT domain and they are then removed by using
local interpolation [2];

• methods that are based on the self-reference princi-
ple. In these methods, the autocorrelation function
(ACF) is used for watermark recovering [3].
The first two of these methods have the following

drawbacks. Regarding the first one, the quality of the
stego image is not high enough due to the embedding
performed into perceptually important frequency com-
ponents. Moreover, significant problems of watermark
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detection appear when rotation is applied simultane-
ously with change of aspect ratio. For the second one,
efficient removal attack exists, allowing to destroy syn-
chronization pattern [2]. Hence, there only remains
the third class of methods to show good performances
against geometrical attacks.

Self-reference based methods utilize the following
property of the ACF of periodical signals [3]: it is pre-
sented as a regular grid of periodically placed local max-
imas (peaks). So, comparing the ACF of the geometri-
cally distorted watermark with that of original water-
mark allows to perform its successful recovery under ge-
ometrical attacks.

Additionally, developers can benefit from periodi-
cal watermarking (Figure 1) for the resistance to ad-
ditive attacks (for example, independent identically dis-
tributed (i.i.d.) AWGN attack) due to diversity decod-
ing.

Figure 1: Periodical watermarking.

Most of the research up to date has focused on the
development of practical methods that enable recov-
ery under geometrical transforms. However, there is a
lack of investigation regarding the information-theoretic
properties of these techniques including the capacity
analysis under optimal attacking strategies.

In this paper, we first investigate the capacity of peri-
odical watermarking under an additive Gaussian attack
when different levels of correlation are assumed. Our
second goal is to show how the attacker could use the
information given by the algorithm structure to decrease
the rate of reliable communications.

The paper is organized as follows. In Section 2, an
information-theoretic analysis of periodical watermark-
ing is presented. In Section 3, a possible attacking
senario is given when the structure of data-hiding algo-
rithm is known, in some details, by the attacker. Finally
Section 4 concludes the paper.

Notations. We use capital letters to denote scalar
random variables X, bold capital letters to denote vector
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random variables X, corresponding small letters x and
x to denote the realizations of scalar and vector random
variables, respectively. The superscript N is used to
designate length-N vectors x = xN = [x1, x2, ..., xN ]T
with ith element xi. The variance of X is denoted by
σ2

X . The covariance matrix of X is denoted by CXX.
λi is the eigenvalue of CXX. We use X ∼ N

(
0, σ2

X

)
to indicate that a random variable X is Gaussian. IN

denotes the N × N identity matrix. ρij is the correla-
tion coefficient between Xi and Xj . The forward and in-
verse Fourier Transform of W is denoted by F {W} and
by F−1 {W}. log means log2 everywhere. RWW(x, y)
stands for the autocorrelation function of W.

2. INFORMATION THEORETIC
MODELLING OF PERIODICAL

EMBEDDING

Periodical embedding of the watermark can be modelled
in terms of parallel Gaussian channels [4] as in Figure 2.
In this approach, each embedding block is interpreted as
a channel through which the watermark information W
is sent and each channel is attacked with corresponding
noise Zi. Assume that W ∼ N

(
0, σ2

W In

)
is the water-

mark, where n is the embedding block linear size, and
Zi are the noise vectors such that (Z1i

, Z2i
, . . . , ZNi

) ∼
p(z1, z2, . . . , zN ) = N (0,CZZ);

CZZ = σ2
Z


1 ρ12 . . . ρ1N

ρ21 1 . . . ρ2N

...
...

...
...

ρN1 ρN2 . . . 1

 . (1)

Figure 2: Parallel Gaussian channels model of the peri-
odical embedding.

The maximum value of I (W;Y1, ...,YN ) over the
pdf of W will give the capacity of this embedding.

Therefore, by comparing this value for different attacks,
we can decide which one is the worst. Due to the
i.i.d. distribution of both watermark and noise vectors,
I (W;Y1, ...,YN ) is equal to:

I(W;Y1, ...,YN ) = nI(W ;Y1, ..., YN ). (2)

I(W ;Y1, ..., YN ) can be written as

I(W ;Y1, ..., YN ) = h(Y1, ..., YN )−
− h(Y1, ..., YN |W ). (3)

Since Yi = W + Zi for each i = 1, 2, ..., N and Zi’s are
independent from W , equation (3) becomes:

I(W ;Y1, ..., YN ) = h(Y1, ..., YN )− h(Z1, ..., ZN ) =

=
1
2

log
(
(2πe)N ∣∣CZZ + σ2

W 1T 1
∣∣)−

− 1
2

log
(
(2πe)N |CZZ|

)
=

=
1
2

log

(∣∣CZZ + σ2
W 1T 1

∣∣
|CZZ|

)
, (4)

where 1 = [111 . . . 1] and |CZZ| is the determinant of
CZZ. Since covariance matrices are symmetric matri-
ces, they can be diagonalized by an orthogonal matrix.
Thus,

∣∣CZZ + σ2
W 1T 1

∣∣ can be expanded to:∣∣CZZ + σ2
W 1T 1

∣∣ =
∣∣QΛQT + σ2

W 1T 1
∣∣ =

=
∣∣Λ + QT σ2

W 1T 1Q
∣∣ =

=
∣∣Λ + σ2

W QT 1T 1Q
∣∣ , (5)

where Λ is a diagonal matrix whose non-zero elements
are equal to the eigenvalues of CZZ and Q is a matrix
whose columns are eigenvectors of CZZ. According to
[5], we have:∣∣Λ + σ2

W QT 1T 1Q
∣∣ =

(
1 + σ2

W 1QΛ−1QT 1T
)
|Λ| =

=
(
1 + σ2

W 1C−1
ZZ1T

)
|Λ| , (6)

where QΛ−1QT = C−1
ZZ. Similarly, |CZZ| can be ex-

panded as:

|CZZ| =
∣∣QΛQT

∣∣ =
=

∣∣QT Q
∣∣ ∣∣QΛQT

∣∣ =
=

∣∣QT
∣∣ |Q| ∣∣QΛQT

∣∣ =
=

∣∣QT
∣∣ ∣∣QΛQT

∣∣ |Q| =
=

∣∣QT QΛQT Q
∣∣ =

= |Λ| . (7)

Therefore, inserting the results of equations (6)-(7) in
equation (4), one obtains:

I(W ;Y1, ..., YN ) =
1
2

log
(
1 + σ2

W 1C−1
ZZ1T

)
. (8)

In the next sections we will show how the structure
of CZZ will influence the system performance.
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2.1 AWGN attack

In the case of an AWGN attack, CZZ will be a diagonal
matrix (i.e. ρij = 0 if i 6= j)

CZZ = σ2
Z


1 0 . . . 0
0 1 . . . 0
...

...
...

...
0 0 . . . 1

 . (9)

Therefore, the inverse of CZZ will be equal to 1
σ2

Z

IN and
equation (8) can be rewritten as follows:

I(W ;Y1, ..., YN ) =
1
2

log
(

1 + σ2
W 1

1
σ2

Z

I1T

)
=

=
1
2

log
(

1 +
σ2

W

σ2
Z

11T

)
=

=
1
2

log
(

1 + N
σ2

W

σ2
Z

)
(10)

that is the maximum embedding rate under an AWGN
attack.

2.2 Periodical noise attack

If we apply the same noise in all channels (i.e. Z1 =
Z2 = . . . = ZN ), CZZ will have the following form:

CZZ = σ2
Z


1 1 . . . 1
1 1 . . . 1
...

...
...

...
1 1 . . . 1

 . (11)

However, since |CZZ| = 0, C−1
ZZ does not exist. Never-

theless, we can write [5]

|CZZ| =
N∏

i=1

λi. (12)

For CZZ, λ1 = Nσ2
Z and λi,i 6=1 = 0. Similarly, for

CZZ + σ2
W 1T 1, λ1 = N

(
σ2

Z + σ2
W

)
and λi,i 6=1 = 0.

Putting these values into equation (12) and afterwards
into equation (4), we will have

I(W ;Y1, ..., YN ) =
1
2

log

(
N
(
σ2

Z + σ2
W

)
Nσ2

Z

)
=

=
1
2

log
(

1 +
σ2

W

σ2
Z

)
(13)

That is the maximum embedding rate under periodical
noise attack. If the embedding distortions are bounded
in the L2-norm sense, it was recently shown [6] that
the worst attack consists in a MMSE estimation of the
host image and AWGN test channel from rate distor-
tion theory. Comparing (10) and (13), it becomes clear
that performance of periodical watermarking will be de-
creased more when AWGN in the worst attack will be
replaced by the periodical noise.

3. PERIODICAL EMBEDDING: SECURITY
LEAKAGE

In Section 2, it was shown that the capacity reduction of
periodical watermarking is more severe in the case of pe-
riodical noise attack than for the case of AWGN attack.
This feature can be effectively used by the attacker to
reduce communication rate of practical watermarking
systems. The rest of this section is dedicated to the
main aspects of the periodical attacking of periodical
watermarking.

3.1 Estimation of the watermark

Assuming additive watermarking, embedding can be
modelled as:

S = W + X, (14)

where S is the stego image, W ∼ N
(
0, σ2

W In

)
is the

watermark message and X ∼ N (x,CXX) is the original
image. A Maximum A Posteriori (MAP) estimation can
be used to estimate W [7] as

Ŵ = argmaxW∈RN PS|W(s|w)PW(w) =

= σ2
W In

(
σ2

W In + CXX

)−1
S. (15)

3.2 Calculation of the autocorrelation function
of the watermark

The autocorrelation function of the estimated water-
mark (Figure 3) can be efficiently calculated in the
Fourier transform domain by [8]

RWW(x, y) = F−1

{∣∣∣F {Ŵ (m,n)
}∣∣∣2} , (16)

where F
{

Ŵ (m,n)
}

is the 2-D Fourier transform of Ŵ.

Figure 3: Autocorrelation function of a locally Gaus-
sian watermark with embedding block size is 24x24 and
image size is 96x96.

Having the estimate of the watermark ACF, the at-
tacker is able to estimate the block size (Figure 4).
Therefore, he/she should generate an i.i.d. AWGN with
the dimensionality of the embedding block and insert
this noise in all blocks. This attacking strategy will
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constrain the information-theroretical limits of periodi-
cal watermarking by equation (13). It should be pointed
out that when adding i.i.d. AWGN to the whole image,
the performance is bounded by (10), which corresponds
to a higher capacity.

Figure 4: Orientation of the peaks of Figure 3 on the
X&Y axes

4. CONCLUSION

Periodical embedding has been developed against ge-
ometrical attacks, and has also been used in various
watermarking schemes in a diversity framework. For
the evaluation of these schemes, additive white Gaus-
sian noise has so far been considered the worse attack.
We however demonstrate in this paper that for peri-
odical embedding of the watermark, periodical noise is
worse than additive white Gaussian noise. The only
property of the periodical noise that matters is its em-
bedding block size. Since this information is also leaked
by the autocorrelation function of the embedded period-
ical watermark, it is easy to design a proper attacking
noise. Periodical watermarking schemes should there-
fore be tested against periodical noise instead of additive
white Gaussian noise.
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