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ABSTRACT

We consider the problem of quantizing, channel coding, and
transmitting a continuous-valued correlated source over a
noisy channel. This serial concatenation of the channel code
and the source-redundancies calls for the use of the turbo
principle for decoding; in our context this concept is known
as iterative source-channel decoding. We determine the char-
acteristic curves of the source decoder for use in the extrin-
sic information transfer charts (EXIT charts) and show how
they vary with the quantizer bit mappings and with the
amount of correlation in the source. Moreover, we discuss
a method for the optimization of the quantizer bit mappings
for use in iterative source-channel decoding.

1. INTRODUCTION

It was already pointed out by Shannon [1] that source redun-
dancy will help to combat noise at the receiving end if no at-
tempt is made to eliminate it by source coding. Although in
today’s communications systems sophisticated source coding
schemes are widely used, it is usually impossible to remove
all redundancy from the source signals (e.g., speech, audio,
or image signals), due delay and complexity constraints that
enforce limited block lengths for source and channel cod-
ing. Hence, the parameters, into which the actual source
signals are usually decomposed prior to quantization, are
regarded as our correlated source signals below. Although
for certain system setups optimal joint source-channel de-
coding algorithms are known (e.g., [2]), they are often in-
feasible due to complexity. Hence, suboptimal algorithms
with lower complexity are usually required. One promis-
ing approach is iterative source-channel decoding (ISCD) for
which some foundations were laid in [2], extensions were pre-
sented in [3], and analysis tools were discussed in [4]. In this
paper we discuss the characteristic curves which show how
the source decoder interacts with other components in an
iterative source-channel decoding scheme and we present a
method based on EXIT charts [5] to evaluate the perfor-
mance in terms of source signal-to-noise ratio. Further, we
show that the performance of such an iterative decoding sys-
tem is strongly influenced by the quantizer bit mappings and
we sketch a method of how to optimize them.

2. SYSTEM MODEL

Our system model is given in Figure 1. The source pro-
duces a sequence X{ = {X1,Xs,..., X1} of L continuous-
valued, Gaussian distributed, correlated values X;, which
are generated by passing uncorrelated Gaussian samples
through a discrete-time linear filter with the transfer func-
tion H(z) = %=, a = {0.5,0.9}. Each value X; is quantized
by a @Q-bit scalar quantizer thus producing an index sequence
Iy ={I1,I2,....,Ir}. According to a time-invariant bit map-
ping p, each index I; is assigned a unique @-bit binary se-

1Two examples for such parameters are the mean power of
the signal and the linear-predictor coefficients that describe the
spectral shape of the signal.

quence B; = u(I;), where Bi={B; 4, ¢ =1,2,...,Q}, Biq €
{0, 1}, thus producing a bit sequence B¥ = {B;,Bs,..., Br}
of length K = L-(Q. This bit sequence is bitwise interleaved,
producing U = II(BY) where II defines the interleaving,
before being inserted into a channel encoder to produce the
bit sequence V{¥ = {Vi,..,Vn}, where each V,, € {0,1},
n =1,...,N, and N > K. Thus the channel code rate
is R = K/N. The sequence Vi¥ is transmitted over an
AWGN channel using coherently detected BPSK modula-
tion;? No/2 is the power spectral density of the channel noise
and Es is the energy used to transmit each code-bit. The
received sequence is called V{¥ € IRN. Due to the modula-
tion/transmission model, we obtain channel L-values [6] for
individual bits V;, from the received values v,, by
P(0n|Va=0)  Fs .

L(5,|Vy) = log, St — =) — 425, | 1
(Un|Vn) Ee Ve = 1)~ * N (1)

i.e., we obtain reliability information serving as the chan-
nel input to the channel decoder simply by multgolying the
channel outputs v, with the channel constant 4 %= Since
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Figure 1: System Model.

correlation exists within the source, it contains redundancy
and thus may be thought of as a kind of (implicit) channel
code. Hence, the entire system may be viewed as a seri-
ally concatenated code, the iterative decoder for which is
also shown in Figure 1. In the decoder, information between
the components is passed by L-values for individual bits; for
brevity, we use the vector notation L(BY) = {L(B,4),l =
1,.,Lig=1,...,Q}.

The channel encoder may be either a simple binary con-
volutional code for example, in which case the corresponding
component decoder would be a symbol-by-symbol APP (A
Posteriori Probability, BCJR [7]) decoder or the channel en-
coder may itself be a concatenated code, in which case the
outputs are no longer necessarily APPs. Thus we label the
channel decoder as being Soft-In/Soft-Out (SISO).

2The mapping from bits v, € {0,1} to antipodal BPSK signal
values is included in the AWGN channel. The channel pdf is gijzen
by p(On|vn) = ﬁ -exp(—#(f)n —(1—2v,))?) with 02 = 2B
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3. THE SISO SOURCE DECODER

Due to correlation in the source, correlations will also exist
between the quantizer indexes Ij, I;_1,.... We model their
dependencies by a first order Markov chain where states
correspond to quantizer indexes. It is possible to deter-
mine, e.g., by simulation, the transition probabilities of the
Markov chain. In Figure 2 we give the example of a Gauss-
Markov source with filter coefficient a = 0.9, and scalar op-
timal quantization by @ = 5 bits. In what follows, we will

PG, 1)
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0.1

Figure 2: State transition probabilities of Markov source
with correlation coefficient a = 0.9. Optimal scalar (Lloyd-
Max) quantization by @ =5 bits.

show how to determine the probabilities of the states of the
Markov source, when it is observed through the noisy com-
posite channel that includes the shaded blocks in Figure 1.
As the correlations exist between the quantizer indexes, i.e.,
groups of bits, we first have to convert our composite chan-
nel for bits into a “vector channel.” For this, we think of the

L-values L(AS)(BZ,Q) at the channel decoder output as being
generated by a memoryless, additive white Gaussian noise
channel with some noise variance 0% (we will not need to
know). The corresponding channel model for one of the bits

B4 from the sequence BY is depicted in Figure 3. The scal-

Figure 3: L-values generated by a Gaussian channel.

ing factor 0% /2 is caused by the L-value consistency condi-
tion [5] that links the variance and the mean of a conditional
L-value variable at the output of a Gaussian channel. The
conditional channel pdf corresponding to Figure 3 equals®

2
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The consequence of the consistency condition is that
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~exp(

1
Pe(Yi,qlbrqg) = \/77
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log

value Lf) (Bi,q) we get from the channel decoder can be

interpreted as a realization of the random variable Y] 4.
With the pdf (2) and the assumption that our composite

“I-value channel” is memoryless* we can now state a pdf for

3We use small letters to refer to realizations and capitals to re-
fer to the corresponding random variables. The latter are omitted
as long as there is no risk of confusion.

4This is approximately true due to the bit interleaver in Fig. 1.

a vector yi = {yi,1,...,y1,0} of received L-values (from the
channel decoder), given some index i was transmitted:

Q
pe(yilir) = HPC(yl,q bi.q = Hq(it))
q=1

Q
=gy, oa1) exp (=D yig pqlit)) . (3)

This computation is performed by the “B — I”-block in
Figure 1. The notation pq(7;) is used in (3) to address the bit
number ¢ that the bit mapping p generates from the index ;.
The second line in (3) follows, if we insert (2). Note that the
function g(yi,04,/) depends only on the channel observations
and the noise variances, but not on the hypothesis for the
quantizer index ;.

The problem of how to determine probabilities of the
states in the Markov source, observed through a memoryless
noisy channel as described by (3), is solved by the BCJR
algorithm [7] and we now repeat the most important points
in our context.

We have a discrete time Markov source where the states
(quantizer indexes in our case) are labeled as i, with

ieZ=1{0,..,2°—1}. (4)

The state at time [ is labeled I; and in our case, the output

of the Markov source Z; = I;. Further, we have the state
transition probabilities,

pu(ild’) = Pr{li = i|ll-1 = i'}, (5)

(see Figure 2) and the output probabilities,
q(zli'yi) =Pr{Z; = 2|, =4, I; = i}. (6)

Since in our case Z;=1I,

g )1, z=1
qi(2[i', i) = { 0, otherwise. (7)

We input the sequence I¥ into a memoryless channel and
observe yF (a length-L sequence of L-value vectors y;, each
of dimension @) at the output. Our aim is to determine from

the whole sequence y¥ the conditional probabilities

p(li =i,y7)
Ziezp(ll = ivylL) (8)

of the individual states I;, I = 1,...,L. According to [7],
p(I; = i,y¥) can be computed by

p(L = i,y1) = (i) - Bi(d) 9)

with the forward recursion

a()) =Y n(i'si) - ara (i) (10)

i eT

Pr{l, = iy} =

and the backward recursion

Bi(E) =D (i i) - Bisali') (11)
i'eT
where the « values are defined as

(@) = Y mlild) @zl i) pwlZi=2)  (12)

z€T
= pu(ili") - pe(yil L = i) ; (13)
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(13) follows from (7). As we insert (3) into (13), we get
product-terms such as Hi/zl g(y],0.4,’) from the recursions
(10), (11). Note that they cancel out in (8), i.e., we don’t
need to know the variances o4, which comes down to the
known fact [6] that we may scale ¢, 3 in the BCJR recursions
to our convenience without changing the decoding result.

The actual source decoder output is given by the mini-
mum mean-square estimator [2]

Xi=Y a-Pr{li=ilyr}, (14)

i€l

where the results from (10)—(12), inserted into (9) and (8),
are used and Z; denotes the quantizer reproduction value
with the index 3.

4. ITERATIVE DECODING

After SISO channel decoding and BCJR source decoding as
described above we could, in principle, compute the mean-
square estimates (14). Channel decoding up to now was,
however, carried out without a priori information from the
source; hence, there is room for quality improvements by
using the new information about the indexes, generated by
the source decoding, for another round of channel decoding.
As again new information can be generated by the source
decoder, after it gets improved inputs from the channel de-
coder, we can carry out several iterations of SISO source and
channel decoding. At this point we face the problem that the
channel code is binary, which means its decoder requires bit-
based a-priori information, but the a-posteriori probabilities
we computed by (8) are for quantizer indexes, i.e., groups of
bits. Hence, we compute

Pr{Big=clyiy= )

i€TL:uq(i)=c

Pr{l; =ilyr}  (15)

for individual bits, with ¢ € {0, 1}, i.e., we sum all the index
probabilities from (8) with a certain bit value ¢ at the bit-
position q. Within the iterations the source decoder sends its
messages to the channel decoder (see Figure 1) in terms of L-
values. Hence, we convert the probabilities (15) to L-values
according to

Pr{Bq = 0|y1L}

L(S>(Bl,q) = IOge PI‘{Bl _ 1|yL} .
»q T 1

(16)

The operations described by (15) and (16) are carried out
by the “I — B”-block in Figure 1. As the L-values in (16)
contain the new information generated by the source decoder
but also its a-priori information, we subtract the latter (to
avoid looping back information) to generate the extrinsic L-

values LEES)(BM) from the source redundancies, which form
the a-priori information for the channel decoder in the next
iteration (see Figure 1, where “E” and “A” indicate “extrin-
sic” and “a priori” respectively whilst “(C)” and “(S)” indi-
cate “channel decoder” and “source decoder” respectively).

5. OPTIMIZED QUANTIZER BIT MAPPINGS

If we assume a low-pass correlation for the source, the value
of the sample X; will be close to X;_1. Thus, if the input at
“time” [—1 is scalar quantized, e.g., by reproduction value &1
(see Figure 4), the next quantized value at “time” [ will be
Zo, 1, or T2 with high probability, while the probability for,
say, &7 is small. For the transmission, the indexes i of the
quantizer reproduction values Z; are mapped to bit-vectors
b = u(7) as illustrated by Figure 4.

If the channel code is strong, we can idealize this sit-
uation by assuming, that its extrinsic output information

A CCRE N
natural 000 001 010 011 100 101 110 111
4—0—0—04—0—0—}—0—0—0—0—0—0—0» o e x
Zo o) Ty T3 T4 Ts Tg T

optimized 111 001

010 100 110 101 011 000
7 7

Gray 000 001 011 010 110 111 101 100
IN =g T

Figure 4: Bit mappings p for a Q-bit quantizer (Q = 3)

is perfect; within the iterative decoding scheme this means
that the source decoder tries to generate extrinsic informa-
tion for a particular data bit, while it knows all other bits
exactly. The situation is illustrated by Figure 4: as an exam-
ple, we consider the case that the bit-vector of the quantizer
reproduction value ;1 has been transmitted and that the two
leftmost bits are known (both are zero in all mappings), due
to the a-priori information from the channel decoder. We
now try to generate extrinsic information for the rightmost
bit from the source redundancies.

If we use the natural or the Gray mapping and flip the
rightmost bit, we end up with quantizer value Zo instead
of 1. Since Zo and Z: are neighbors in the source signal
space we cannot decide with low error probability whether
the rightmost bit is “one” or “zero,” because both Zo and
Z1 are highly probable due to the low-pass correlation of
the source samples. The situation is different if we use the
optimized mapping: since we jump to quantizer value 7
(which is highly improbable) if we flip the rightmost bit, we
can take a safe decision in favor of “one.” Thus, the extrinsic
information generated by the source decoder is strong and it
will aid the channel decoder in the next iteration.

The example above suggests the concept of how to opti-
mize the bit mapping: we have to allocate bit-vectors to the
quantizer reproduction values such that, if we flip one of the
bits, each pair of reproduction values has a large distance in
the source signal space.® A detailed description of a feasible
optimization algorithm is given in [3].

6. CHARACTERISTIC CURVES OF SOURCE
DECODER AND SNR CONTOUR LINES

Following [5], we simulate the source decoder alone, for var-
ious amounts of a priori information® I(B,,; L;S)(Bl,q)) and

measure thereby the mutual information (B g; Lg)(th))
between the information bits and their extrinsic L-values
at the source decoder output. The quantities I4 and Ig

in plots below are the averages of I(Bl,q;Lff)(Bl,q)) and

1(Big; L%S)(Bl,q)), respectively, over the whole block of in-
formation bits and many simulated blocks.

We used the BCJR algorithm as described above for
source decoding and we tested correlated sources with a =
0.5 and a = 0.9 scalar (Lloyd-Max) quantized by @ = 5 bits.
Figure 5 shows the results. The Gray-mapping produces an
extrinsic output I > 0, even if the a-priori information is
zero (I4 = 0). This is due to the non-uniform, symmet-
ric probability distribution of the reproduction values of the
Lloyd-Max quantizer that is used.

Over all, we note that the optimized mapping enables the
highest extrinsic output for an a priori mutual information
of I4 =1 as it is designed to do.

In [5], it was shown how to determine the BER from

5This still holds, if the source signal is high-pass correlated.
8I(A; B) indicates the mutual information between random
variables A and B.
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Figure 5: Characteristic curves for filtered source (a = 0.9
and a=0.5), Q =5, several mappings.

the EXIT chart thus producing BER contour lines. In our
case it is possible to go a step further and produce source
SN Rgp contour lines, which are obtained by simulation. At
each point in the EXIT chart, we determined an equivalent
channel noise variance (using the assumption that our ex-
trinsic L-values are conditionally Gaussian distributed). We
then transmitted bit-mapped symbols over this channel 2and
determined the corresponding SN R4 = 10log;, %
after using the minimum mean-square estimator (14).

Note that the error-free performance for the scalar, op-
timal quantization of a Gaussian source with “high rate”
equals SNR4g = (6.02 - Q — 4.35) dB, i.e., with Q@ = 5 the
best possible source SN Rg4gp is 25.75 dB. It is reached in the
upper right corner of the contour plot in Figure 6, which can
be put as an “SNR-template” on the EXIT charts.

1
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0 0.2
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Ia
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Figure 6: SN Rap contour lines for @ = 5 on the EXIT chart.

7. RESULTS

We simulated a system with a = 0.9 (filter coefficient, Gauss-
Markov source) and a memory-2 recursive binary convolu-
tional code as the channel encoder. There were 10000 sam-
ples transmitted as one “turbo-block.” The systematic bits
of the channel code were punctured such that only a small
portion of them (10%) were transmitted, resulting in a chan-
nel code rate of R. = 0.9. The simulation was performed at
Es/Ny = —0.1dB. Results are shown in Figure 7. It is ob-
vious that the optimized mapping works much better than
the natural mapping, as the characteristic curves intersect
at point “B” which corresponds, by use of Figure 6, to an

B
0.8/ decoding A
trajectory
”” punctured channel
0.6- code characteristic
1©) (S) .
E’A N .
... natural mapping
04¢ S source code
7 opt. mapping = characteristic
(mirrored)
0.2
00/ 0.2 0.4 6 0.8 1
To '

Figure 7: EXIT chart decoding trajectory for transmission of
10000 samples of the correlated Gaussian source with a = 0.9
at Fs/No = —0.1dB; channel code rate R. = 0.9.

SNR-performance of about 20 dB. The characteristic curve
of the natural mapping, on the other hand, intersects with
that of the convolutional code already at point “A,” which
corresponds to a source SNR of only 3 dB. Both predicted
SNR-results match the true simulation results well which is
also confirmed by the decoding trajectory inserted into Fig-
ure 7.

8. CONCLUSIONS

We showed to what extent correlations existing in a Gaus-
sian source may be exploited in an iterative source-channel
decoder. As a tool for analysis we used EXIT charts to which
we added source SNR contour lines that allow to determine
the transmission quality after convergence of iterative de-
coding. We verified the EXIT tool by plotting the decoding
trajectory of a simulated system on the EXIT chart.
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