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ABSTRACT

This paper proposes a new method for the interpolation of Head-
Related Transfer Functions (HRTFs) applied to the generation of
3-D binaural sound, especially when dealing with moving sound
sources indoors. The method combines a modified linear interpo-
lation strategy with a representation of the auditory space based on
spatial characteristic functions (SCFs), previously known from the
literature. The main idea here is to associate the low complexity the
SCF-based representation yields in the multi-source case with the
inherent simplicity of the linear interpolation. Complexity issues
are discussed. The performance of the proposed method is evalu-
ated against the direct bilinear interpolation of HRTFs, using Spatial
Frequency Response Surfaces (SFRSs).

1. INTRODUCTION

The three-dimensional sound generation through head-phones can
be achieved by filtering a monaural sound by Head-Related Transfer
Functions (HRTFs). These functions describe the paths between a
sound source and each ear of the listener.

The placement of a virtual sound source at an arbitrary posi-
tion around the listener requires an adequate interpolation proce-
dure, since those functions have usually been measured only for a
finite set of positions [1]. There are several ways to perform inter-
polation [2, 3, 4, 5], one of the most popular being the direct bilinear
interpolation of HRTFs.

On the other hand, for multiple sound sources, which may in-
clude the modeling of early reverberation through image sound
sources, some alternative representation strategies have been de-
vised to reduce the computational complexity of 3-D sound sys-
tems [6, 7, 8]. One of them is the so-called Spatial Feature Ex-
traction and Regularization (SFER) model, a continuous representa-
tion of the auditory space based on Spatial Characteristic Functions
(SCFs).

The present work proposes the application of a modified linear
interpolation method to the SCFs, aiming at further reduction of the
computational requirements of the SFER method.

The next section reviews the bilinear interpolation method and
describes its triangular version. Then, in Section 3, after the KLT-
based Spatial Feature Extraction is reviewed, the proposed method
for interpolation of the SCFs is described, and complexity issues
are addressed. In Section 4, the results attained by the procedure
described in Section 3 are compared with those of the direct bilinear
interpolation of HRTFs. Section 5 presents the conclusions.

2. BILINEAR INTERPOLATION

Given a known set of measured HRTFs, or their time counterparts,
the HRIRs (Head-Related Impulse Responses), a simple way to in-
terpolate non-measured functions is the bilinear [3, 4] method. The
HRIR associated to a desired position is computed by weighting
the contributions of the HRIRs associated to the nearer surrounding
positions with measured HRIRs, as Figure 1 illustrates.

The authors wish to thank CNPq, a Brazilian research council, for sup-
porting this work.
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Figure 1: Bilinear interpolation.
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Figure 2: Detail of triangular regions over the reference sphere.

Assume that all measured HRIRs refer to points located over
a reference sphere centered in the middle point between the ears,
along fixed angular steps θgrid and φgrid for azimuth and elevation,
respectively. Referring to Figure 1, the approximation for the HRIR
h(k) associated to the desired point would be

ĥ(k) = (1− cθ )(1− cφ )ha(k)+ cθ (1− cφ )hb(k)+

cθ cφ hc(k)+(1− cθ )cφ hd(k),

where ha(k), hb(k), hc(k) and hd(k) are the HRIRs for the nearer
positions related to the desired one. The coefficients cθ and cφ can
be calculated as follows:

cθ =
Cθ

θgrid
=

θmodθgrid

θgrid
and cφ =

Cφ
φgrid

=
φmodφgrid

φgrid
,

where Cθ and Cφ are the indicated relative positions.
For practical reasons, a typical set of measured HRIRs (as those

measured by Gardner and Martin [1], which are employed along this
work) would refer to points more or less homogeneously distributed
around the sphere, which implies variable angular grids. A possi-
ble generalization of the bilinear method for this situation employs
triangular regions [5], as in Figure 2. Now, the interpolation of the
HRIR for point P can be performed as

ĥP(k) = wAhA(k)+wBhB(k)+wChC(k), (1)
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where

wC =
∆φ

∆φgrid
, wB =

1
∆θgrid

(∆θA −wC∆θAC) ,

and wA = 1−wB −wC, (2)

with the angular distances defined as

∆θgrid = θB −θA, ∆θA = θP −θA, ∆θAC = θC −θA,

∆φgrid = φC −φA, and ∆φ = φP −φA.

It is assumed, without loss of generality, that the points A and B
have the same elevation.

In order to avoid undesired destructive interference, the inter-
polation procedure given by equation (1) should be performed on
the minimum-phase versions of the measured HRIRs [9]. In fact,
the excess of phase of each original HRIR over its minimum-phase
counterpart amounts approximately to a pure delay [10]. To pre-
serve the effect of these inherent delays [11], they should be esti-
mated and combined into an interpolated delay ∆.

Figure 3 shows the block diagram of the interpolation procedure
described above, for a single channel (left or right) of the binaural
system.

3. SCF INTERPOLATION

The HRTFs can be considered as functions of three variables: two
spherical coordinates of position (assuming constant radius) and the
frequency. The frequency dependence can be separated from the de-
pendence of the angular coordinates azimuth θ and elevation φ [6],
in such a way that

H(θ ,φ , f ) =
N

∑
i=1

ωi(θ ,φ)Γi( f ),

where ωi(θ ,φ) and Γi( f ) are the spatial and frequency dependent
components, respectively.

In [7, 8], the authors propose the so-called Spatial Feature
Extraction and Regularization (SFER) model, that represents the
HRTFs via the Karhunen-Loève Transform (KLT) [12], by using its
base functions as the component Γi( f ). An analogous procedure
can be adopted for the HRIRs, and this is the chosen formulation
hereafter.

3.1 Spatial Features Extraction

Considering a matrix H containing measured order-N HRIRs in its
rows, the eigenvectors [ψ j(0) · · ·ψ j(N − 1)]T of the HRIR autoco-
variance matrix C can be obtained as the columns of Ψ in

C = (H−H)T (H−H) = ΨΛΨT
, with ΨT Ψ = I, (3)

where Ψ is the KLT matrix, Λ is the diagonal matrix whose diagonal
elements are the eigenvalues of C, and H contains in every row the
mean HRIR, h(k).

The goal is to find an approximation for the HRIR h(θ ,φ ,k)
associated to any point (θ ,φ) over the reference sphere in the form

ĥ(θ ,φ ,k) = h(k)+
N

∑
j=1

ω j(θ ,φ)ψ j(k),

- ψM(k)ωM(θ, φ)

h̄(k)

-

-

-

-
?w

6

-

ψ1(k)

ω2(θ, φ)

ω1(θ, φ)

z−∆ right
channel

monaural
signal

ψ2(k)
left or

Figure 4: SFER structure.

where ω j(θ ,φ) are the so-called Spatial Characteristic Functions
(SCFs). For the previously known HRIRs h(θ̃ , φ̃ ,k), measured at
points (θ̃ , φ̃), the KLT coefficients ω j(θ̃ , φ̃) can be determined, thus
yielding ĥ(θ̃ , φ̃ ,k) = h(θ̃ , φ̃ ,k). The KLT coefficients related to any
other HRIR should be computed from ω j(θ̃ , φ̃).

The use of the KLT allows a significant complexity reduction:
Instead of using all eigenvectors found through Equation (3) [7, 8]
to represent the HRIRs, one can use only M of them (with M < N)
by selecting those with larger eigenvalues. This work uses the
eigenvectors corresponding to the M = 32 largest eigenvalues,
which concentrates 99,9% of the total energy.

Figure 4 shows the block diagram of the approximated HRIR
for a single channel (left or right) of the binaural system

Notice that the SFER model is expected to yield reduced com-
plexity when compared to the usual bilinear interpolation because
in the former only the number of necessary SCFs increases propor-
tionally to the number of sources (the number of ψ j(k) remains the
same), while in the latter the overall calculations must be indepen-
dently done for each sound source

3.2 Approximation of the SCFs

In [8, 7, 13], the SCFs ω j(θ ,φ) for any position (θ ,φ) are com-
puted from their known samples ω j(θ̃ , φ̃) through spline interpo-
lation. Despite its good performance, this approach may require a
large number of operations for spline evaluation, depending on the
spline employed. In the following, a simpler alternative to the spline
is proposed.

If a virtual source is inside a triangular region ABC, as in Fig-
ure 2, supposing that an initial estimate has been previously com-
puted, the estimation of SCFs is done in an incremental form. The
updating equation is given by

ω j(θl ,φl) = ω j(θl−1,φl−1)+∆ω j,l−1, (4)

where l is the angular position index. The increment applied to
weight ω j from position l −1 to position l can be computed as

∆ω j,l−1 = (θl −θl−1)
∂ω j(θ ,φ)

∂θ

∣

∣

∣

∣

θ=θl−1
φ=φl−1

+

+(φl −φl−1)
∂ω j(θ ,φ)

∂φ

∣

∣

∣

∣

θ=θl−1
φ=φl−1

.

Of course, the partial derivatives cannot be obtained analytically.
However, each SCF ω j(θ ,φ) can be approximated by triangular
faces whose vertices are its known samples ω j(θ̃ , φ̃). Then, those
derivatives can be estimated by the slopes of the face containing the
point (θl−1,φl−1). Their values should be computed a priori and
stored in a look-up table.

One should take care with the cumulative error that might de-
velop along the updating of ω j(θ ,φ). This error can originate
mainly when the sound source crosses the boundary between two
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faces, since the plane derivatives are discontinuous on the bound-
aries. This problem is easily circumvented simply by recalculating
an initial estimate for each new visited region. A possible way to
perform this estimation is to apply the bilinear method directly to
the SCFs associated to the vertices A, B, and C:

ω j(θ ,φ) = wAω j(θA,φA)+wBω j(θB,φB)+

wCω j(θC,φC), (5)

where wA, wB, and wC are computed according to Equation (2).
The algorithm for obtaining the SCFs along the virtual sound

source path can be summarized as follows:

1. For a new triangular region, compute the first SCFs according
to Equation (5).

2. If the next position is inside the same region, update the SCFs
through Equation (4).

3. Otherwise, return to the first step.
4. Return to the second step.

The advantage of the incremental method over the spline in-
terpolation, without considering the operations related to the fixed
filters shown in Figure 4, which are the same in both cases, can be
easily verified. The former needs only 3M multiplications plus 5M
additions per channel per sample per source, while the complexity
of the latter is proportional to M times the logarithm of the total
number of measured HRIRs [14] (over 700 in the present case) per
channel per sample per source.

It can also be shown that if the number of sound sources pro-

cessed exceeds (M+1)N
3(N−M+2)

, the proposed incremental method yields
lower complexity than the direct bilinear interpolation of HRTFs.
For the present case (N = 128 and M = 32), this limit number equals
16, which, in the context of image sources modeling early reflec-
tions, is not too large a number.

4. PERFORMANCE COMPARISON

Figures 5 and 6 provide some comparisons between the direct bi-
linear interpolation of HRTFs (left columns) and the incremental
interpolation of the SCFs (right columns), using the so-called Spa-
cial Frequency Response Surfaces (SFRSs) [15]. Each plot shows
the magnitude response of the approximated HRTFs versus angular
positions, for a given frequency.

There is no noticeable difference between the SFRSs of the two
methods. In order to provide a more precise evaluation, Figure 7
shows a 100-bin histogram for the relative error

ξ = 20log10

(

|Ĥ(θ ,φ , f )|
|H(θ ,φ , f )|

)

computed over a dense set of angles and frequencies (θ , φ , f ).
|H(θ ,φ , f )| and |Ĥ(θ ,φ , f )| are samples of the SFRSs shown in
Figures 5 and 6 for the direct bilinear and incremental interpola-
tions, respectively. This histogram indicates that more than 98%
of the calculated results exibits an error lower than 0.729 dB, thus
confirming that the proposed method is a computationally advanta-
geous alternative for the multi-source implementation of 3-D bin-
aural sound.

5. CONCLUSIONS

The present paper proposed an hybrid way to interpolate HRTFs by
applying the principle of bilinear interpolation to the spatial features
extracted from a set of HRIRs. It exhibits lower computational com-
plexity than previous methods for the multi-source case, thus being
especially suited for modeling moving sound sources indoors. The
quantitative comparison between the proposed incremental method
and the direct bilinear interpolation of HRTFs indicates very similar
performances.
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Figure 5: Direct-bilinear (left) versus incremental-SCF (right)
method: 340, 930, 1900, 2400 Hz.
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method: 3850, 4800, 5800, 7750, 9700 and 12600 Hz.
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