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ABSTRACT
A coefficient-parameter embedding method is presented for invert-
ible deinterlacing with variable coefficients in the application to
Motion-JPEG2000 (MJP2). Invertible deinterlacing, which the au-
thors have developed before, can be used as a preprocess of frame-
based video codec, such as MJP2, for interlaced videos. When the
conventional field-interleaving is used instead, comb-tooth artifacts
appear around edges of moving objects. On the other hand, the
invertible deinterlacing technique allows us to suppress the comb-
tooth artifacts and also to recover an original picture on demand. As
previous works, the authors have developed a variable coefficient
scheme with a motion detector, which realizes adaptability to local
characteristics of given pictures. When applying this deinterlacing
technique to an image codec, however, it is required to send coef-
ficient parameters to receivers for original picture recovery. This
work proposes a parameter-embedding technique and constructs a
standard stream which consists both of picture data and parame-
ters. The parameters are embedded into the first LH subband of
the wavelet domain through the ROI (region of interest) function
of JPEG2000, while maintaining the capability of comb-tooth sup-
pression and quality recovery.

1. INTRODUCTION

Two formats of interlaced scanning and progressive scanning are
in use for recording and displaying motion pictures [1–3]. The
intraframe-based coding of interlaced pictures such as NTSC sig-
nals assumes field interleaving. Such a scheme can offer some
advantages. Because an excellent still picture coding such as
JPEG2000 (JP2) is directly applicable, its various options can be
utilized for creating, editing and archiving video contents as well
as in coping with various network environments and front-end
terminals. Unfortunately the field interleaving causes horizontal
comb-tooth artifacts around the boundaries of moving objects [4].
In the case of scalable transform-based coding such as Motion-
JPEG2000 (MJP2) [5], quantization errors introduced in vertical
high frequency components of the comb-tooth artifacts are annoy-
ingly perceivable at low bitrates. To suppress the unfavorable ar-
tifacts, the intraframe-based coding system with a pre-filter was
proposed [4]. It is shown to be effective in decoding videos at a
certain target bit rates. Especially it is true for low bit-rate applica-
tions. Note that scalable codec systems should cover a wide range
of decoding bit-rate. In high bit-rate decoding with this approach,
however, the resolution of a picture is decreases due to lowpass fil-
tering. To solve this problem, we developed an invertible deinter-
lacing technique with sampling density preservation as a prepro-
cessing to scalable intraframe-based coding [6, 7]. We further de-
veloped variable-coefficient invertible deinterlacing so that the filter
characteristics can be selected according to local properties of pic-
tures [8, 9]. For the application to video codec systems, however,
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Figure 1: Intraframe-based coding system with deinterlacer.

the variable-coefficient invertible deinterlacing has to send the co-
efficient parameters to the receiver for recovering the original pic-
tures.

In this work, we propose to embed the coefficient parameters
to the MJP2 stream by using the ROI (Region of Interest) function-
ality. Since specified ROI shapes can be detected by decoder, the
region where the deinterlacing is applied can be transmitted. As
a result, encoders and decoders become able to share the informa-
tion of parameter position and values. In our proposed method, the
coefficient parameters are embedded into the LH1 component be-
cause the comb-tooth artifacts strongly appears in this subband. It
is investigated if we can keep the standard stream format of MJP2
without significant loss of the comb-tooth suppression and quality
recovery capabilities even though the parameters are embedded.

2. REVIEW OF INVERTIBLE DEINTERLACING

In this section, we introduce the variable-coefficient invertible dein-
terlacing as a preliminary.

2.1 Application Scenario [10]

Figure 1 shows an outline of our suggested codec system [10]. This
system uses an invertible deinterlacer as a pre-filter. We suggest a
codec system with the deinterlacing to support both of frame and
field-based display. The comb-tooth artifacts can be suppressed for
both of field and frame-based pictures at low bitrates, whereas the
quality of field-based pictures can be maintained with reinterlacer
at high bitrates. For low bit-rate decoding, a simple deinterleaver
is performed to split fields from frames. Both of field and frame-
based videos can be obtained from one standard code-stream on
demand. Although producing a progressive scanning video given
by doubling the sampling density via another deinterlacing for the
reinterlaced result is beyond the scope of this work, it surely is pos-
sible.

2.2 Variable-Coefficient Filters

As found in the articles [8,9], we introduced the variable deinterlac-
ing technique. The pair of the deinterlacing and reinterlacing filters
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Figure 2: Efficient implementation of deinterlacing with variable
coefficients, where the symmetric extension method is
applied.
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where αn is a parameter and z is a 3× 1 vector which consists of
variables in a 3-D z-domain, that is z = (zT,zV,zH)T . The char-
acteristics of these filters are controlled among temporal, vertical-
temporal and vertical filters in the range of 0≤αn < 2. In particular,
for αn = 1, the coefficients of the pair are given by power of two,
and become the same as ones shown in the articles [6, 7, 10, 11].
In addition, the deinterlacer becomes simple field interleaving for
αn = 0, so that the original quality can be maintained.

Figure 2 illustrates efficient operations with the filters in Eqs.(1)
and (2). The white, black and gray circles indicate pixels on top
line, bottom line of X(z) and odd line of deinterlaced frame Y (z),
respectively. The odd line of deinterlaced frame pictures can be ob-
tained by weighted sum of three lines with weights beside arrows.
It is verified that our variable-coefficient method can be computed
through the in-place implementation. Even if the value of αn is var-
ied for each sample on odd line, X(z) can be recovered from Y (z)
as shown in Fig. 2. Note that the property of perfect reconstruction
can be kept for this implementation independently from the choice
of αn.

2.3 Adaptive Control Method

The parameter αn can have any value in the range of 0 ≤ αn < 2.
The value, however, should be transmitted to a decoder for rein-
terlacing, if the inverse process is desired. It is thus significant to
limit the possible quantities for efficient transmission of αn. In addi-
tion, the reduction of the computational complexity is another con-
cern. To cope with these two practical requirements, we proposed
to switch the value of αn between 0 and 1 [8, 9].

To detect regions prone to yield comb-tooth artifacts, we sug-
gested to apply a vertical high-pass filter prior to deinterlacing. The
motion detection to predict comb-tooth artifacts was switched be-
tween 0 and 1 by a threshold value T . The invertible deinterlacing
with variable coefficients avoids flickering by locally suppressing
the comb-tooth artifacts, while keeping quality recovery by reinter-
lacing.

Simultaneous transmission of parameters decreases the bit-rate
assigned to the picture data within a specified bit-rate. In a previ-
ous work, to reduce the coefficient parameters, we further proposed
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Figure 3: Process flow of parameter reduction method [12].

a parameter reduction method without significant loss of comb-
tooth suppression capability. Figure 3 shows the flow graphs of the
method, where a horizontal low-pass filter is added in the motion
detector. As a result, the amount of parameters can be reduced and
the quality of recovered pictures are improved compared with the
original full parameter method at same bitrates. The details of this
reduction method were shown in the article [12].

Note that it is still necessary to send the coefficient parameters
to a receiver, and the simultaneous transmission of parameters is
preferable to the separate transmission. In this work, we propose to
embed the parameters into MJP2 stream by using the ROI function-
ality without significant loss of the performance.

3. PROPOSED ROI APPROACH

In this section, we propose to embed the coefficient parameters into
ROI of MJP2 so that we can make all of data one standard bitstream.

3.1 Overview of ROI Maxshift Method

JPEG2000 supports ROI coding. The ROI function achieves non-
uniform distribution of the image quality between a specified region
and the background region. According to the ROI Maxshift method
defined in JP2 part I, the background bit-planes are down-shifted be-
low all of the ROI coefficients [5]. ROI can have any shape, which
does not need to be transmitted to the decoder side. From these rea-
sons, we propose to use the ROI shape for transmitting the position
where the deinterlacing is applied.

3.2 Choice of Target Subband

The ROI function can independently specify its shape in each sub-
band. To suppress the influence on the image quality due to em-
bedding coefficient parameters to ROI, we propose to embed the
parameters to one subband domain. Note that the size of parame-
ters is W/2×H/2 and fits to one of level-1 subband domain, where
W and H denote the width and height of the original picture.

The coefficient parameters are determined by the output of a
horizontal-lowpass and vertical-highpass filter, that is comb-tooth
detection filter. Thus, the LH1 subband coefficients should be
treated carefully to recover the original picture. From this reason,
coefficient parameters are embedded into subband LH1 as ROI.

3.3 Progression Order

There are five different progression orders supported in JP2 [5].
The LRCP (Layer Resolution Component Position) progression is
one of the main progression types. The LRCP progression arranges
code-stream firstly in terms of layer and then of resolution. Since
our invertible deinterlacer is meaningful for the SNR scalability, we
here investigate only the LRCP progression case. When the LRCP
progression is used, a problem arises. If only the ROI subband is
given priority in the stream, the lower significant bits, that would
be discarded if the ROI weren’t used are regarded as important bits
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for decoding. As a result, disagreeable pictures are yielded espe-
cially at low bitrates since other significant bits out of ROI subband
coefficients are discarded.

To solve this problem, we suggest to add the entire compo-
nents of the subband LLn(= {LLn+1,HLn+1,LHn+1,HHn+1}) to
ROI, where n denotes the depth of level. As examples, our pro-
posed masks are given in Fig. 4. In addition, we suggest to replace
the value of the least significant bit (LSB) in LLn of ROI region to
zero so as to preserve some bits in non ROI coefficients that would
be pushed out if the replacement weren’t applied. We verified that
we can achieve a similar quantization through the expounded quan-
tization supported in JP2. With regard to the choice of n we will
discuss in the next section.

3.4 Processing Flow

Figure 5 (a) and (b) show our proposed process flows integrated
into an encoder and a decoder of JP2. The coefficient parameters
from deinterlacer are passed to the ROI Scaler, and are given to
LH1. All coefficients in LLn are given as ROI. At a high bit-rate
decoder, the information on LH1 of the ROI mask is detected at ROI
Descalers, and they are passed to the reinterlacer. Lastly, a picture
is reconstructed. At a low bit-rate decoder, or a standard decoder,
the reinterlacing process is skipped.

4. PERFORMANCE EVALUATION

To show the significance of our proposed approach, we demonstrate
the comb-tooth suppression capability at low bitrates from view of
subjective quality and show PSNRs as the quality recovery capabil-
ity at high bitrates. In this evaluation, successive frame pictures of

(a) Simple field interleaving (b) Separate transmission
[12]

(c) ROI transmission
(n = 1)

(d) ROI transmission
(n = 2)

(e) ROI transmission
(n = 3)

(f) ROI transmission
without ROI in LL

Figure 6: Decoded pictures at low bit-rate (0.1 bpp).

Football sequence (720× 480 pixel, 8-bit grayscale) are used. Each
frame picture is encoded at 2.0 bpp and then decoded at 2.0 and 0.1
bpp by JP2 [14].

4.1 Low Bitrate Performance

Figures 6 (a) - (f) show the decoded pictures at 0.1 bpp, where
n denotes the depth of LL levels in which entire coefficients are
maxshifted and the LSB in ROI are discarded. The simple field
interleaving does not require any transmission of parameters.

The comb-tooth artifacts produced by the simple field interleav-
ing are clearly perceived in Fig. 6 (a). In contrast, those artifacts are
significantly suppressed by the invertible deinterlacer as shown in
Figs. 6 (b) - (e). The deeper the entire maxshift operation is applied
to LLn components, the more blurry the result becomes. We can
recognize that the maxshift operations to LL1 or LL2 are moderate
at low bit-rate decoding in this experiment.

4.2 High Bitrate Performance

Figure 7 shows PSNRs of decoded pictures at high bitrates. The
reinterlacing is used to recover the original quality at the decoder
side. Here, the following methods are compared:
• Separate transmission without decimation [8, 9]
• Separate transmission with decimation [12]
• ROI transmission without LL maxshift
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• Proposed ROI without LL quantization (n = 1)
• Proposed ROI without LL quantization (n = 2)
• Proposed ROI without LL quantization (n = 3)

In addition, results before reinterlacing are shown in Fig. 7. Quality
recovery of reinterlacing can be verified. For reference, the follow-
ing two schemes are also shown:
• Simple field interleaving
• Fixed coefficient deinterlacer with gain compensation [13]

In our proposed methods, PSNRs are improved as the depth n in-
creases. When n = 3, it reaches to the result of separate transmission
technique with parameter decimation. This tendency is opposite to
that of the low bit-rate decoding. Actually, the result without LL
maxshift outperforms the proposed methods, although pictures at
low bitrates are not acceptable.

In addition, Figure 8 demonstrates the effect of our proposed
quantization. Results of the LSB quantization in LLn subband out-
perform those without quantization. We can find a tradeoff between
the performances in low and high bit-rate decoding. The proposed
method for n = 1 gives a good compromise in this experiment.

It should be noted that the field interleaving shows well result
in the quality recovery. This technique is simple and requires no
parameter transmission. The suppression capability at low bitrates
is, however, inferior to the other methods. The fixed coefficient
deinterlacing also performs well without transmission of parame-
ters. This technique, however, applies the filtering process to whole
of picture, thus still parts are not guarded.

5. CONCLUSIONS

We presented ROI embedding method for parameters of variable-
coefficient invertible deinterlacing. By our proposal, it became pos-
sible to share coefficient parameters in one standard MJP2 code-
stream. To give appropriate pictures at low bitrates, we also pro-
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Figure 8: Effect of discarding LSB of ROI in LL

posed to set a certain LL subband region as ROI. It was shown that
the depth of LL levels specified as ROI gives us a tradeoff with re-
spect to performances between low and high bit-rate decoding. The
demonstrated experiments did not apply neither of the DWT gain
compensation nor any remedy to parameter loss caused by zero-
value coefficients. As well, the ROI function is not necessarily the
only solution to embed the parameters into standard code-streams.
As future work, we will consider improving performances of pa-
rameter embedding by taking measures for these problems into ac-
count.
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