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ABSTRACT

A new Variable Step-Size Affine Projection Algorithm (VSS-
APA) robust under impulsive noise interference is proposed
and its performances are investigated through simulations.
The proposed step size takes into account the instantaneous
value of the output error and provides a trade-off between
the convergence rate and the steady-state coefficient error by
controling the two modes of the adaptive filter: the updating
and the freezing modes. The VSS-APA algorithm is seen to
robustly identify the unknown system. It presents a good
behavior in terms of the convergence speed and the steady
state error compared to the classical approaches based on,
a nonlinear function (M-estimator of Huber) or the median
filter such as: the MNLMS, the NRLS and the Median LMS
algorithms.

1. INTRODUCTION

Most signal processing algorithms developed for adaptive
filtering are based on the assumption that the noise is Gaus-
sian distributed. However, in most practical environments,
the noise can be generated by some natural and/or man-
made electromagnetic sources and it exhibits impulsive char-
acteristics [1]. Under this adverse condition, the perfor-
mance of the conventional linear adaptive filters can be dete-
riorated significantly. To overcome this problem, it is desir-
able to build adaptive filtering algorithms that maintain ap-
propriate functionality under a broad class of noise sources
(interferences, impulsive noise, ...etc.). Many authors have
noted that non-linearities, via the application of the Hu-
ber’s Min-Max approach [2], can be incorporated into the
product of the error signal and the tap input of the Least
Mean Square (LMS) algorithm and thus the performance
of the adaptive filter can be improved. The algorithm is
called Non-linear LMS (NLMS) [3]. In this sense, sev-
eral non-linear algorithms have also been developed, such
as, the Robust Mixed Norm (RMN) [4], the mixed norm
LMS (MNLMS) [5], the Order Statistic Least Mean Square
(OSLMS) [6] and the Nonlinear Recursive Least Square

(NRLS) [3]. Beside those solutions, a great attention has
also been given to the application of the median filter in or-
der to smooth the gradient estimate such as the Median LMS
filter proposed in [7]. All the aforementioned techniques try
to reduce the hostile effect of large estimation error, due to
impulses, on the filter weights.
In this paper, we focus on the study of the Affine Projec-
tion Algorithm (APA). The analysis of the impact of the im-
pulses on its convergence behavior shows that the observed
instability can be controlled and reduced by the reduction
of the adaptation constant denoted here by µ. However,
this reduction causes the reducing of the convergence rate
of the algorithm and its capacity to respond to the possibly
non-stationnary input signals. To overcome the weakness,
we propose, in this paper, the use of a Variable Step Size
(VSS) which suppresses systematically the hostile impact
of large estimation error due to impulsive noise by freezing
the updating equation. Therefore, the proposed VSS-APA
algorithm, which presents two modes: updating and freez-
ing modes which are controlled by the value of the VSS,
robustify, as we will see, the classical APA algorithm. This
improvement in the performance is achieved at practically
no increase in computational complexity.
The remainder of this paper is as follows. The next sec-
tion presents the identification system and the non Gaussian
noise model. Section 3 recall the classical APA algorithm
and study the impact of the impulsive noise on its perfor-
mances. Section 4 gives the outline of the proposed VSS.
Section 5 gives some simulation results. Finally, section 6
draws our conclusion.

2. SYSTEM AND NOISE MODEL

Let us consider the system identification problem shown in
Figure 1. The signal d(n) is the input of the adaptive lin-
ear filter characterized by its impulse response denoted by
hopt = [h1,opt, ..., hN,opt]

T which represents the unknown
weight vector.
d(n) = [d(n), ..., d(n−N + 1)]T is the input signal vector
where the channel order, denoted by N , is supposed to be
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Fig. 1. System identification structure.

known. The received signal, y(n), can be written as follows,

y (n) = d(n)T
hopt + w(n) + v(n) (1)

where w(n) is the Gaussian background noise with zero
mean and variance σ2

w and v(n) is the impulsive component.
In the following, the impulse noise is modeled as following:

v(n) = γ(n)g(n) (2)

where {γ(n)} stands for a Bernoulli process, a sequence of
zeroes and ones with p(γ = 1) = ε, where ε is the contami-
nation constant. It expresses the probability that an impulse
occurs. g(n) is a white Gaussian noise with zero mean and
variance σ2

v such as σ2
w � σ2

v . In this paper, we take a linear
variation of the two variances,

σ2
v = κσ2

w with κ � 1 (3)

Under this model, the probability density of the channel
noise b(n) = w(n) + v(n) can be expressed as

p(b(n)) = (1 − ε)N (0, σ2
w) + εN (0, (κ + 1)σ2

w) (4)

whereN (mx, σ2
x) is the Gaussian density function with mean

mx and variance σ2
x. {b(n)} is called an ””ε − − contam-

inated”” noise sequence. This model serves as an approxi-
mation to the more fundamental Middleton Class A noise
model [1].
In the next section, we recall the well known APA algorithm
and we study the impact of impulsive noise on its perfor-
mances.

3. INSTABILITY OF APA ALGORITHM IN
IMPULSIVE ENVIRONMENT

The LMS algorithm is well known in adaptive filtering, how-
ever, its convergence speed may be far from acceptable for
many applications, such as echo cancellation, when the in-
put sequence is correlated. To overcome this problem, many
modifications that aim to decorrelate the input signal are
done. In particular, this lead to the affine projection algo-
rithm [8]. The APA algorithm is given by the following

equations,
{

ĥ(n) = ĥ(n − 1) + µ
u(n)

u(n)T
u(n)+η

e(n)

e(n) = y(n) − d(n)T
ĥ(n − 1)

(5)

Where the estimation error at time n is given by

e(n) = y (n) − ŷ (n) = y(n) − d(n)T
ĥ(n)

where ĥ(n) =
[
ĥ1(n), ..., ĥN (n)

]T

is the estimated coeffi-

cients vector delivered by the identification algorithm. µ is
a positive step size. η is a positive regularization constant
which is added in order to prevent undesired behavior when
u(n) = 0.
The vector u(n) can be defined as a direction vector since it
determines the direction of the update. It is defined by [8],

u(n) = d(n) −Mnv(n) (6)

where v(n) =
[
M

T
nMn

]
−1

M
T
nd(n) and the matrix Mn =

[d(n − 1), ...,d(n − m)] is the collection of the last m ob-
servation of d(n) with m < N . In this paper, we choose
m = 2.
The APA algorithm suffers from serious performance degra-
dation and may fail entirely when the signal e(n) is cor-
rupted by impulsive noise. In Figure 2, we plot the evo-

lution of the squared error estimation,
∥∥∥ĥ(n) − hopt

∥∥∥
2

, in

the presence of impulsive noise (characterized by ε = 10−2

and κ = 1000). The channel weights are chosen hopt =

[1, 0.2, 0.5]
T

. The step size parameter is chosen µ = 0.02
and µ = 0.002. We remark that the APA algorithm with
µ = 0.02 exhibits instability. This problem can be con-
trolled, as is shown in Figure 2, by the reduction of the adap-
tation constant µ, (in our case µ = 0.002). This reduction
causes the reduction of the convergence rate and the capac-
ity of the algorithm to respond to a non stationnary input
signals.
It is clear that the major cause of the observed instability is
the linear dependency between the output error, e(n), and
the impulsive component. So, in the literature, it is often
proposed to use the M-estimate proposed initially by Huber
or the median filter in order to reduce the impact of the large
estimation error on the weight adaptation, through the term
e(n)d(n), while maintaining performance comparable to a
non-impulsive environment. In this paper, instead of reduc-
ing the step size or incorporating a nonlinear function which
performances are dependant of the choice of the clipping
threshold, we here propose to freeze the updating equation
when an impulse occurs in the received signal. For this aim,
we must modify the fixed step size to a VSS which will be
able to freeze automatically the updating, when an impulse
occurs in the received signal, and will keep an optimal be-
havior in the absence of impulses. In the next section, we
present the proposed VSS.
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Fig. 2. Instability of the APA2 algorithm in the presence of
impulsive noise.

4. PROPOSED APPROACH

In [9], it is shown that the detection of impulses in the re-
ceived signal given by equation (1) can be cast as a binary
hypothesis-testing problem as follows: H1 presence of im-
pulsive noise and H0 absence of impulsive noise. When, H1

hypothesis is decided, we freeze the updating. However, in
this case, we should update the Likelihood Ratio Test at the
sampling rate which would increase the complexity of the
algorithm.
For this purpopse, we propose to build a step size which
is able to decrease very rapidly to zero when an impulse
occurs in order to stop the updating step. For this purpose,
we propose,

µ(n) =
a

b + ce2(n)
(7)

where a, b et c are positive constants. We notice that the pro-
posed step size takes into account the instantaneous power
of the output error e(n) in order to robustify the detection
of the presence of the impulses in the received signal de-
noted by y(n). The behavior of the proposed VSS replaces
the hypothesis test proposed in [9] without any complexity
increase.
So, the proposed VSS denoted by µ(n) is bounded by µmax

from above and µmin = 0 from below. Typically, the value
of µmax is selected to provide the maximum possible rate of
convergence. µmin = 0 implies the freeze of adaptation of
the algorithm especially when an impulse occurs. In fact:

{
Appearence of impulses ⇒ e(n) ↗ ⇒ µ(n) = 0

absence of impulses ⇒ e(n) → 0 ⇒ µ(n) = a
b

So, it is clear that the choice of the parameters a and b can be
done using the main result of the paper [10], which consider
a Gaussian noise case. In fact, the appearance of impulses is
controlled by Bernoulli process. So, when γ = 0 the main
component of the observation noise, b(n), is Gaussian (first
term in the equation (4)), the result of the paper [10] can be
used. We note also that the proposed VSS can be used in
order to robustify the LMS algorithm and in this case the
parameters a and b are chosen using this condition [11]

a

b
<=

1

Nσ2
d

(8)

where σ2
d is the variance of input signal.

The parameter c accelerates the convergence of the VSS to
zero especially when the impulses occur. The parameter c

is fixed by simulation.
In order to reduce the complexity of the VSS-APA2 algo-
rithm, the product u(n)T

u(n), d(n)T
d(n − 1) and d(n −

1)T
d(n − 1) are computed recursively where we incorpo-

rate an exponential windowing via a positive constant λ,
(0 < λ < 1) which governs the averaging time constant. So
the VSS-APA2 can be described as following:

e(n) = y(n) − d(n)T
ĥ(n − 1) (9)

p(n) = λp(n − 1) + (1 − λ) ([d(n − 1)]1)
2 (10)

q(n) = λq(n − 1) + (1 − λ) [d(n − 1)]1 [d(n)]1(11)

u(n) = d(n) −
p(n)

q(n)
d(n − 1) (12)

g(n) = λg(n − 1) + (1 − λ) ([u(n)]1)
2 (13)

ĥ(n) = ĥ(n − 1) + µ(n)
e(n)

g(n) + η
u(n) (14)

where [x]1 represents the first component of the vector x.

5. SIMULATION RESULTS

In order to evaluate the performance of the proposed robus-
tification approach, simulation is carried out on the system
identification problem as shown in Figure 1. The unknown
system is modelled as a FIR filter with impulse response,
hopt = [1, 0.2, 0.5]

T . The adaptive filter is assumed to have
the same length as the unknown system, i.e. N = 3. The pa-
rameters of the impulsive noise are ε = 10−2 and κ = 1000.
The Signal to Noise Ratio is chosen equal to 15 dB. The
initial weights of the adaptive filter are set to zeroes. We
choose a = 1, b = 40 and c = 20. So µ(0) = 1

40 . The
forgetting factor λ is chosen equal to 0.98.
First, we plot on Figure 3 the variation of the VSS µ(n) ver-
sus iterations. We remark the good behavior of the step size
which switch the APA algorithm on two modes: updating
and freezing modes. The value of µ(n) is around 1

40 in an

1913



0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.005

0.01

0.015

0.02

0.025

0.03

Iterations

S
te

p 
si

ze

0 200 400 600 800 1000 1200 1400 1600 1800 2000

−10

−5

0

5

10

Iterations

Im
pu

ls
es

 a
pp

ea
re

nc
e

Fig. 3. Variation of the value of the VSS, µ(n), versus iter-
ations

impulse free signal (i.e. γ = 0) and around 0 in an impulse
signal (i.e. γ = 1).
Second, we plot the normalized square norm of the weight
error vector. We have compared the convergence behavior
of the proposed approach, the MNLMS proposed in [5, 12]
and the Median LMS proposed in [7].
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Fig. 4. MSE performance of the proposed VSS-APA2 algo-
rithm compared to the MNLMS and the Median LMS algo-
rithms under impulsive noise.

We remark that the proposed approach robustly identify the
unknown system. It presents a good behavior in term of
the convergence speed and the steady state error, (for ex-
ample, about −32dB in the MSE for the VSS-APA2 when
MNLMS presents a MSE of −20dB) without any complex-
ity increase.

6. CONCLUSION

In this paper, a Variable Step Size for the robustification of
the APA algorithm is proposed. It controls the two modes of
the adaptive filter: updating mode and freezing mode. Sim-
ulation results show that the performance of the proposed
approach is better than the MNLMS, Median LMS algo-
rithms based on the classical approach (nonlinear function,
median filter). Work is now in progress to generalize these
results to the multiuser CDMA context.
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