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ABSTRACT 
Our challenge is to analyze/classify video sound track con-
tent for indexing purposes. To this end we compare the per-
formance of MPEG-7 Audio Spectrum Projection (ASP) 
features based on basis decomposition vs. Mel-scale Fre-
quency Cepstrum Coefficients (MFCC). For basis decompo-
sition in the feature extraction we have three choices: Prin-
cipal Component Analysis (PCA), Independent Component 
Analysis (ICA), and Non-negative Matrix Factorization 
(NMF). Audio features are computed from these reduced 
vectors and are fed into hidden Markov model (HMM) clas-
sifier. Experimental results show that the MFCC features 
yield better performance compared to MPEG-7 ASP in the 
sound recognition, and audio segmentation.   

1. INTRODUCTION 

Our challenge is to analyze/classify video sound track con-
tent for indexing purposes.  
Recently, audio contents become more and more important 
clues for effective video indexing, because different sounds 
can indicate different important events. In most cases it is 
easier to detect most important events and appealing things 
using audio features than using video features.  
Toward this end, the MPEG-7 sound-recognition tools [1][2] 
provide a unified interface for automatic indexing of audio 
using trained sound classes in a pattern recognition frame-
work.  
 A feature extraction method of the MPEG-7 sound recogni-
tion framework is based on the projection of a spectrum 
onto a low-dimensional subspace via reduced-rank spectral 
basis functions. The dimension-reduced decorrelated fea-
tures, called Audio Spectrum Projection (ASP), are used to 
train hidden Markov models (HMM) [3] in order to apply 
uniformly to diverse source classification tasks with accu-
rate performance.  
In this paper, the MPEG-7 ASP features based on several 
basis decomposition algorithms are applied to sound recog-
nition and to segment conversational speech of panel discus-
sion television programs. For the measure of the perform-
ance we compare the classification and segmentation results 
of MPEG-7 standardized features vs. Mel-scale Frequency 
Cepstrum Coefficients (MFCC). 

2. MPEG-7 SOUND CLASSIFICATION SYSTEM 

The sound classification task is performed using three 
steps: audio feature extraction, training of sound models, 
and decoding.  Figure 1 depicts the procedure of sound rec-
ognition classifier. 
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Figure 1: Block diagram of  MPEG-7 sound classification 

2.1 Feature Extraction Using Basis Projection 
The audio feature extraction module extracts audio informa-
tion from a given audio sound. The MPEG-7 ASP feature 
extraction mainly consists of a Normalized Audio Spectrum 
Envelope (NASE), a basis decomposition algorithm and a 
spectrum basis projection.  

2.1.1 Normalized Audio Spectrum Envelope  
The observed audio signal is divided into overlapping 
frames by hamming window function and analyzed using 
the short-time Fourier transform (STFT). To extract re-
duced-rank spectral features, the spectral coefficients are 
grouped in logarithmic sub-bands. The output of the loga-
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rithmic frequency range is the sum of the power spectrum in 
each logarithmic sub-band. The spectrum according to a 
logarithmic frequency scale consists of one coefficient rep-
resenting power between 0 Hz and “low edge”, a series of 
coefficients representing power in logarithmically spaced 
bands between “low edge” and “high edge”, and a coeffi-
cient representing power above “high edge”. The resulting 
log-frequency power spectrum is converted to the decibel 
scale. Each decibel-scale spectral vector is normalized with 
the RMS (root mean square) energy envelope, thus yielding 
a normalized log-power version of the ASE called m×n 
NASE matrix X.  

2.1.2 Decomposition Algorithm 
In general, removing statistical dependence of observations 
is used in practice to dimensionally reduce the size of data-
sets while retaining as much important perceptual informa-
tion as possible. For such a basis decomposition step, we can 
choose one of the following methods: Principal Component 
Analysis (PCA) [4], Independent Component Analysis 
(ICA) [5], and Non-negative Matrix Factorization (NMF) 
[6].  

• Principal Component Analysis (PCA):  
PCA aims to reduce the dimensionality of a data set by 
only keeping the components of the sample vectors with 
large variance. PCA decorrelates the second order mo-
ments corresponding to low frequency properties and 
extracts orthogonal principal components of variations. 
By projecting onto these highly varying subspace, the 
relevant statistics can be approximated by a smaller di-
mension system.  

• Independent Component Analysis (ICA):  
ICA is a statistical method which not only decorrelates 
the second order statistics but also reduces higher-order 
statistical dependencies. Thus, ICA produces mutually 
uncorrelated basis. The independent components of a 
NASE matrix X can be thought of a collection of statisti-
cally independent sources for the rows (or columns) of 
X. The m×n matrix X is decomposed as  

 NWSX +=  (1) 

where S is the r×n source signal matrix, W is the n×r 
matrix mixing matrix or the matrix of spectral basis 
functions, and N is the matrix of noise signals. Here r is 
the number of independent sources. The above decom-
position can be performed for any number of independ-
ent components and the sizes of W and S vary accord-
ingly. We use the FastICA algorithm [5] for performing 
the decomposition. 

• Non-negative Matrix Factorization (NMF) 
On the other hand, NMF attempts a matrix factorization 
in which the factors have non-negative elements by per-
forming a simple multiplicative updating. The NMF of 
X is given by  

                    GFX =                      (2) 

 

where the factor G and F contain only non-negative en-
tries. The columns of the m×n matrix X are the signals, 
the columns of the m×r matrix G are the basis signals, 
and the r×n matrix F is the mixing matrix. Here r is the 
number of non-negative components. The multiplica-
tive divergence update rules are as the following: 
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We can use the columns of G as the new basis.  

2.1.3 Audio Spectrum Projection 
The resulting audio spectrum projection (ASP) is obtained 
by multiplying the NASE matrix with a set of extracted ba-
sis functions. This spectrum projection is used to represent 
low-dimensional features of a spectrum after projection onto 
a reduced rank basis. The spectrum projection features and 
RMS-norm gain values are used as input to the HMM train-
ing module. 

2.2 Training of Sound Models and Decoding 
For each pre-defined sound class, the training module builds 
a model from a set of training sounds using hidden Markov 
models (HMM). When the training process is complete us-
ing a maximum likelihood estimation procedure known as 
the Baum-Welch algorithm, the statistical basis and HMM 
model of each sound class are stored in the sound model 
database of the sound recognition classifier. 
Given an input sound, the NASE features are extracted and 
projected against each individual sound model’s set of basis 
functions. Then, the Viterbi algorithm is applied to align 
each projection on its corresponding sound class HMM. The 
HMM yielding the best maximum likelihood score is se-
lected. 

3. SEGMENTATION OF SPEAKERS USING MPEG-7 
SOUND CLASSIFICATION SYSTEM  

In this section, MPEG-7 ASP features are applied to seg-
ment conversational speech of panel discussion television 
programs. Without a priori information about number of 
speakers, the speech stream is segmented by a hybrid met-
ric-based [7] and model-based [8] segmentation algorithm. 
The hybrid segmentation using MPEG-7 ASP features is 
mainly composed of six modules: silence removal, feature 
extraction module using normalized audio spectrum enve-
lope (NASE), speaker change detection, segment-level-
clustering module, speaker model updating using MPEG-7 
ASP features and the HMM re-segmentation module. Fig-
ure 2 depicts the algorithm flow chart. 
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Figure 2: Segmentation procedures. 

The speech stream is divided into sub-segments of length  3-
second window with 2.5-second overlapping. In the sub-
segments silence segments are detected by a simple energy-
based algorithm and the detected silence segments are re-
moved. Each non-silence 3s sub-segment is converted into 
NASE features. The speaker change detection step is per-
formed using a NASE divergence distance [9] measure be-
tween two sub-segments and splits the conversation into 
smaller segments that are assumed to contain only one 
speaker. The segments created by the speaker change detec-
tion step are used to form initial clusters from similar seg-
ments. At this stage, we use a hierarchical agglomerative 
method [10] that computes the Generalized Likelihood Ratio 
(GLR) distance [11] between every pair of clusters and 
merges two clusters with the minimum distance at every 
step. The clustering procedure continues to aggregate clus-
ters together until there is just one large cluster. The output 
from the procedure is a tree of clusters. At the end of the 
hierarchical classification algorithm a dendrogram is built in 
which each node corresponds to a cluster. The cutting of the 
dendrogram produces a partition composed of all the utter-
ances. The initial clusters are used to train an initial set of 
speaker models from all segments of each respective cluster.   
Given the NASE features of every cluster, the spectral basis 
is extracted by computing the several basis decomposition 
algorithms. The resulting spectral basis vectors are multi-
plied with the NASE matrix, thus yielding the  dimension-
reduced decorrelated ASP features.  
The spectrum projection features and RMS-norm gain val-
ues are input to the HMM training process. In order to train 
a statistical model on the basis projection features and RMS-
norm gain value of each cluster an ergodic HMM with 7 
states is trained for each cluster. The trained speaker models 
are then used to resegment the speech stream.  
Re-segmentation is achieved by using the Viterbi algorithm 
to determine the maximum likelihood state sequence 
through the sound recognition classifier shown in Figure 1, 
given an observed sequence of feature vectors. 

4. EXPERIMENTAL PROCEDURE AND RESULTS 

4.1 Database 
To test the sound classification system, we built sound li-
braries from various sources. We created 13 sound classes of 
trumpet, bird, dog, bell, cello, horn, violin, telephone, water, 
baby, laughter, gun and motor from the “Sound Ideas” gen-
eral sound effects library and 2 sound classes of male and 
female speech from the collected speech database. 70% of 
the data was used for training and the other 30% for testing.  

For the segmentation we used two audio tracks from televi-
sion talk-show programs. “Talks 1” is approximately 15 
minutes long and contains only four speakers. “Talks 2”, 
which is 60 minutes long, is much more challenging because 
they interrupt each other frequently. It contained 7 main 
speakers (5 male and 2 female), and an applause as the stu-
dio audience often responded to comments with applause.  

4.2 Parameters used in the Implementation 
The audio data used throughout the paper were digitized at 
22.05 kHz using 16 bits per sample. The ASP features based 
on PCA/ICA basis were derived from sound/speech frames 
of length 25ms with a frame rate of 15ms. The lower and 
upper boundary of the logarithmic frequency bands are 62.5 
Hz and 8 kHz that are over a spectrum of 7 octaves. For 
sound classification a 7-state left-right HMM model were 
applied, while  we built a 7-state ergodic model for the seg-
mentation of audio. 
For NMF of the audio signal we had two choices: (1) The 
NMF basis was extracted from the NASE matrix. The ASP 
projected onto the NMF basis applied direct to HMM sound 
classifier. (2) The audio signal is transformed to the spectro-
gram. NMF component parts are extracted from the seg-
mented spectrogram image patches. Basis vectors computed 
by NMF are selected according to thier discrimination capa-
bility. Sound features are computed from these reduced vec-
tors and fed into HMM classifier. 

4.3 Results of Sound Recognition  
Our goal was to identify classes of sound using MPEG-7 
ASP features based on three basis decomposition algorithm 
and MFCC. 
We performed experiments with different feature dimen-
sions of the different feature extraction methods. The results 
of sound classification are shown in Table 1.  
 

Feature Extraction Method Feature 
Dimension ASP-

PCA 
ASP-
ICA 

ASP-
NMF 

MFCC 

7 83.3 82.5 72.92 90.8 
13 90.4 91.7 75 93.2 

 
Table 1: Comparison of sound classification accuracies (%). 
ASP-PCA: MPEG-7 audio spectrum projection (ASP) based 
on PCA basis, ASP-ICA: MPEG-7 ASP based on FastICA 
basis, ASP-NMF: MPEG-7 ASP based on NMF basis. 

 
Regarding the recognition of 15 sound classes MPEG-7 ASP 
projected onto FastICA basis provides slightly better recog-
nition rate than ASP projected onto PCA basis at  dimension 
13, while slightly worse at dimension 7. The recognition 
rates using MPEG-7 conform ASP results appear to be sig-
nificantly lower than the recognition rate of MFCC with the 
dimension 7 and 13. On the other hand, the ASP projected 
onto NMF derived from NASE matrix yields lowest recog-
nition rate, while NMF with spectrogram image patches and 
95 ordered basis provides 94.5 % recognition rate.  Its dis-
advantage is its complexity and its need for much memory. 
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4.4 Results of Segmentation of Speakers 
Our goal for audio segmentation was to separate audio into 
sound events. More specifically, we were interested in 
identifying whenever particular speakers appeared in an 
audio event.  
For the measure of the performance of the error correction 
the recognition rate and F-measure are used. The F-measure 
F is a combination of the recall (RCL) rate of correct 
boundaries and the precision (PRC) rate of the detected 
boundaries. When RCL and PRC errors are weighted as be-
ing equally detractive to the quality of segmentation, F is 
defined as 

 
RCLPRC
RCLPRCF

+
⋅⋅

=
2  (5) 

The recall is defined by RCL= ncf / tn, while precision 
PRC=ncf / nhb, where ncf is the number of correctly found 
boundaries, tn is the total number of boundaries, and nhb is 
the number of hypothesized boundaries, meaning the total 
number of boundaries found by the segmentation module. F 
is bounded between 0 and 100, where F=100 is a perfect 
segmentation result and F=0 implies segmentation to be 
completely wrong.  
Table 2 shows results for segmentation by the hybrid 
method.  
 

System M FD Feature  
Extraction 

Reco. 
Rate (%) 

F 
 (%) 

ASP-PCA 86.4 88.6 
ASP-ICA 86.2 88.5 
ASP-NMF 60.9 62.5 

 
13 

MFCC 90.5 93.5 
ASP-PCA 87.5 91.8 
ASP-ICA 91.5 94.7 
ASP-NMF 63.5 64.3 

 
 
 

Talks 
1  

24 

MFCC 96.8 98.1 
ASP-PCA 71.8 55.8 
ASP-ICA 72.1 56.1 
ASP-NMF 56.3 51.5 

 
13 

MFCC 87.2 69.7 
ASP-PCA 84.6 72.9 
ASP-ICA 88.9 75.2 
ASP-NMF 59.5 57.1 

 
 
 
 
 
 
 

Hybrid  
 
 
 

Talks 
2  

24 

MFCC 93.2 82.7 
 
Table 2: Comparison of segmentation results (%) based on 
several feature extraction methods. M: TV materials, FD: 
feature dimension (NMF basis extracted only from the 
NASE matrix is used for the segmentation). 
 
The segmentation results for Talks 1 was quite good because 
there were only four speakers, and they rarely interrupted 
each other. On the other hand, the results of the segmenta-
tion for Talks 2 was not as good, but still impressive in view 
of the numerous interruptions.   
The recognition accuracy and F-measure of the MFCC fea-
tures are better than MPEG-7 ASP features in the case of 

both 13 und 23 feature dimensions for “Talk Show 1”. For 
“Talk Show 2” the MFCC features show a remarkable im-
provement over the MPEG-7 ASP features. Recall that the 
recognition system identifies speakers as part of the 
segmentation task. Overall MFCC achieves best recognition 
rate and F-measure rate. 

5. CONCLUSIONS 

In this paper we compared the performance of MPEG-7 Au-
dio Spectrum Projection (ASP) features based on three basis 
decomposition algorithms vs. MFCC. Our results show that 
the MFCC features yield better performance compared to 
MPEG-7 ASP in sound recognition and audio segmentation. 
In the case of MFCC, the process of feature extraction is 
simple and fast because there are no bases used. On the 
other hand, the extraction of the MPEG-7 ASP is more time 
and memory consuming compared to MFCC. The NMF 
updating process is very slow compared to FastICA. 
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