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ABSTRACT  
 

A Bayesian approach is proposed for statistical analysis of 
fMRI data sets in a two state (�on-off�) activation study. 
The approach is based on the Relevance Vector Machine 
(RVM) regression framework. According to this approach 
the shape of the activations is a superposition of kernel 
functions, one at each pixel of the image, and a 
hierarchical Bayesian model is employed which imposes a 
sparse representation by selecting a number relevant 
kernel functions. We have implemented an incremental 
method for constructing the RVM model and, in addition, 
we have employed a cross-validation criterion to deal with 
the problem of kernel width selection. The proposed 
method allows the accurate estimation of the activation 
locations when correlated noise is present even at low 
signal-to-noise ratios. We tested this method using an 
artificial phantom derived from a previous neuroimaging 
study with promising results compared with previous 
approaches. 

1. INTRODUCTION 

The aim of a two state neuroimaging study using fMRI is 
to compare two groups of images (acquired in two 
different conditions) in order to identify brain regions 
whose activity level changes in response to some task or 
drug. The result of the study is an activation map 
indicating these regions. Since the observed images are 
quite noisy, one of the most important components of a 
neuroimaging study is the statistical method used to 
detect the activation pattern.  

In this paper we propose the use of RVM-based 
regression [7] to detect the location of the activation 
signal. According to this approach the activation signal is 
modeled as the superposition of kernel basis functions 
with unknown amplitudes. We associate one kernel 
function with unknown weight to each pixel of the image. 
Furthermore, prior knowledge that most of the amplitudes 
are zero is used. For this purpose a hierarchical Bayesian 
model is applied assuming a prior and a hyperprior for the 
unknown amplitudes. In this paper we consider Gaussian-
shaped kernel functions, but any other kernel function 
could be used as well. The RVM learning algorithm is 

used to estimate the vector of amplitudes. Since RVM 
yields a sparse representation most obtained amplitudes 
are very small. Thus, the location of the activations is 
determined automatically as the location of largest 
amplitudes. In order to make the method efficient for 
large images we have implemented a fast incremental 
method for RVM modeling where kernels are added 
incrementally to the RVM model starting with one kernel 
[3]. 

We compared this method with previous methods in 
[4]. We found that this method outperformed all other 
methods and performed almost as well as the Reversible 
Jump Markov Chain Monte Carlo (RJMCMC) approach 
in [3]. The slight performance advantage of the RJMCMC 
seems to not justify its significantly larger computational 
cost. Furthermore, for MCMC techniques there is no 
universally accepted criterion or methodology to decide 
when to terminate [2]. 

2. THE IMAGING MODEL 

Herein we consider a two-state (�on-off�) activation 
study, in which activation- and control-state images are 
obtained, and used to identify activated regions. We 
model images of the brain in the control (c) and activation 
(a) states, respectively, as 

( ) ( )

( ) ( )

( , ) ( , ) ( , ),  

( , ) ( , ) ( , ) ( , ),

c c
j j

a a
j j

g x y b x y n x y

g x y b x y s x y n x y

= +

= + +
 (1)  

for 1, ,j N= … , where, at each spatial location ( , )x y  in 
the brain. The activation pattern we wish to determine is 

( , )s x y .   The baseline value is ( , )b x y  and  ( ) ( , )c
jn x y  

and ( ) ( , )a
jn x y   are the imaging noise contributions for the 

two cases.  
We model the noise as additive colored Gaussian 

noise, the covariance of which is proportional to the value 
of the baseline image at the corresponding pixel and is 
assumed known [5].  This noise is given by 

( ) ( )( , ) , ~ 0,c a
j nn x y N C . 

We define the average activation image as 
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Then, from equation (1) follows 
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In the activation state, the image differs from the control 
state only by addition of the activation pattern. We decide 
to estimate the activation signal ( , )s x y  using a RVM [7], 
and model it as the superposition of M kernel functions 
according to the equation 

 ( ) ( ) ( )( )
1

, , , ,
M

i i i
i

s x y w K x y x y
=

= ∑ ,  (4) 

where M is the number of pixels of each image, 
( )0, xxK  is some kernel function and iw  is the 

amplitude of the kernel centered at [ ]ii yx , . Though any 
kernel function can be used, we assume the commonly 
used Gaussian kernel functions, of the form 

 ( ) 0
1
2

0,
q x x

K x x e
− −

= .    (5) 
The width of the kernel q is unknown, and must be 
specified through cross-validation. 
 

Introducing the design matrix [ ]
1 2

( ), ( ), ..., ( )
T

N
x x xφ φ φΦ = , 

where ( ) ( ) ( )[ ]1 2( ) , , , ,..., , T

n n n n Nx K x x K x x K x xφ = ,  
and defining t  as the vector of observation values of the 

average activation image ( ) ( ),sg x y  we compute the 
likelihood of the average activation image according to 

equation ( ) 2
| , np t w N w C

N
= Φ 

 
 

. 

The model described requires the estimation of as many 
parameters as the available data points. This would lead 
to over fitting unless we impose some additional 
constraint on the parameters. Thus, we assume a Gaussian 
prior distribution over the amplitude 
vector ( )1 2, ,..., Mw w w w= . This approach introduces 
our preference for smoother activation images. In other 
words we have 
 ( ) ( )1| 0,i i ip w a N a −= ,    (6) 

where [ ]1 2, , ..., Ma a a a=  is a vector of M 
hyperparameters determining the strength of the prior 
distribution on each basis function�s amplitude.  The 
vector of hyperparameters, which is considered to be a 
random variable, is a scale parameter and as such it is 
assigned a gamma prior distribution given by  

( ) ( ),ip a Gamma α β= .   (7) 

where the parameters ,α β  are set ( 410α β −= = ) to 
specify a non-informative prior. By integrating over the 
hyperparameters, we can compute the �true� weight 
prior ( ) ( ) ( )|p w p w a p a da= ∫ . This integral gives a 

Student-t prior, which is well known to give sparse 
representations since most of its mass is concentrated 
close to the origin of the axes of definition [7].  

3. BAYESIAN INFERENCE 

Estimation of the activation signal ( ),s x y  is a Bayesian 
inference procedure. Because we cannot compute the 
posterior ( ), |p w a t  directly, following the procedure 
described in [7] we decompose it using Bayes theorem as 
( ) ( ) ( ), | | , |p w a t p w t a p a t= .  (11) 

Then, the posterior distribution over the weights can be 
analytically computed by 
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with 1 2( , ,..., )MA diag a a a= . 
On the other hand, the posterior over the hyperparameters 
( )|p a t  cannot be computed analytically and we 

approximate it by a delta function at its mode as 
( ) ( )

( )( )
where | ,  

arg max | .
MP

MP
a

p a t a

a p a t

δ≈

=
   (13) 

This approximation is frequently used and in this problem 
it is very effective. . 
Since ( ) ( ) ( )| |p a t p t a p a∝ , we can find MPa  by 

maximizing ( ) ( )|p t a p a  

( ) ( )( )arg max |MP
a

a p t a p a=    (14) 

( )|p t a  is known as marginal likelihood or type-II 
likelihood and is computed by marginalizing over the 
weights according to  

( ) ( ) ( )| | | . p t a p t w p w a dw= ∫  

This gives  
( ) ( )| 0, ,p t a N C= with 1 T

nC C A−= + Φ Φ . (15) 
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4. INCREMENTAL MARGINAL LIKELIHOOD 
MAXIMIZATION 

Unfortunately MPa  cannot be computed analytically. 
Instead we can use iterative formula for its re-estimation: 

2

1 2
2

new
i

i ii

a
α

µ β
+

=
+ Σ +

,    (17) 

where iµ  is the i-th element of the posterior mean weight 

and iiΣ is the i-th diagonal element of the posterior 
weight covariance [7]. 

A drawback of the above optimization method is the 
complexity of computing matrixΣ , if the number of basis 
functions is large. Some of these computations can be 
avoided by pruning basis functions whose amplitude is 
estimated to be zero. However, initially there are N basis 
functions, and computation of Σ is time consuming 

One can bypass this difficulty by initially assuming 
only one basis function, and then adding or deleting basis 
functions at each iteration [6]. For the case of  uniform 
prior over hyperparameter a , maximization of (14) is 
equivalent to maximizing 

( ) log ( | )L p tα α=  

11
log 2 log

2
TN C t C tπ −= − + +   .  (18) 

Given a single hyperparameter iα  we can decompose 

( )L α  into two terms, one being independent of iα :  

( ) ( ) ( )i iL L lα α α−= + , 

where ( )iL α
−

is independent of iα , 
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21
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i i i i
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q
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, (19) 

1T
i i i is Cφ φ−−=  and 1T

i i iq C tφ −
−= .   (20) 

iC
−

 is obtained from matrix C  with the contribution of 

basis function iφ  removed:  
1 T

i i i iC C α φφ−
− = −    (21) 

Analysis of ( )il α shows that ( )L α  has a unique 

maximum with respect to iα : 
2

2
2

2

     

             

i
i i

i i

i i

s
if q s

q s

if q s

α

α
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−

= ∞ ≤

    (22) 

Thus we can find MPa  that maximizes the marginal 
likelihood (14) by iteratively: 

• adding a basis function iφ  with 2

i
q s> , 

• re-estimating hyperparameter iα  for a basis 
function already in the model, 

• or deleting a basis function iφ  with 2

i
q s≤ . 

When adding a basis function or re-estimating the 

value of its hyperparameter we set 
2

2

i
i

i i

s

q s
α =

−
 which 

maximizes ( )L α . Thus at each step the marginal 
likelihood increases until it reaches a local minimum. 
Vectors is  and iq can be calculated using their values 
calculated at the previous iteration of the algorithm and 
thus computationally the algorithm is very efficient. 

5. RESULTS 

To evaluate the method we used a simple phantom 
whose properties were derived from a positron emission 
tomography (PET) neuroimaging study, but are also 
representative of whole-brain, blood-oxygenation-level-
dependent (BOLD) functional magnetic resonance 
imaging (fMRI) studies that have been spatially smoothed 
[5]. Figure 1 (a) shows the average of ten simulated 
activation patterns. The location and amplitude of the 
activation were varied randomly from image to image to 
represent physiological variability between subjects or 
scans. Figure 1 (b) shows the average of ten simulated 
�activated� images. Figures 1 (c) and (d) show the 
activation pattern estimated by the RVM method for 
different values of the hyperparameters. 

Two types of activation studies were performed, one 
where an activation was actually present, and one where 
there was no activation.  The purpose of this was to 
simulate both null- and alternative-hypothesis conditions 
for purposes of measuring a ROC curve. Both types of 
activation studies were simulated 50 times to get a good 
statistical estimate of the ROC curve. 

A statistical parametric map (SPM) was generated for 
each activation study and then the value of the pixel 
where the activation was sometimes present was 
thresholded to decide between the two hypotheses. The 
SPM was generated by computing the value of the 
likelihood ratio for the two hypotheses at each pixel of the 
image 

( ) ( ) ( )( )
( ) ( ) ( )( )

( )
( )

1

0

�, | , , � ,
�, | , , ,

s

s

p g x y s x y H s x y
p g x y s x y H x y Nσ

=  (23) 

where ( )� ,s x y  is the estimate of the activation signal, 

and ( ),x yσ is the standard deviation of the imaging 

noise at location ( ),x y . 
To evaluate and compare performance, we used the 

area under the ROC curve for false positive fraction 
between 0.0 and 0.1 because this is the most useful range 

803



 

 

of operating points. A comparison is shown in TABLE I, 
with various methods listed in order of performance.  
These methods are described in detail in [4]. The RVM 
provided the second best performance in the simple case 
we considered and was only slightly worse than the 
RJMCMC approach in [3]. However, RJMCMC being a 
random sampling method is notoriously time consuming. 
Furthermore, it is difficult to establish when the chain has 
converged in order to stop sampling.  

An important problem with the application of the 
RVM model is the specification of the kernel 
characteristics (in our case the width of the Gaussian 
kernel) which are assumed to be known a priori. In order 
to specify an appropriate value for kernel width, we have 
used the leave-one-out cross validation criterion 

2
2 � �( ( ))�

T

LOO

y P diag P Py
N

σ
−

= ,   (24) 

where T
NP I= −ΦΣΦ  is known as the projection 

matrix. Experiment for several width values have shown 
that the use of cross-validation to select the appropriate 
kernel width in each experiment, leads to a slight increase 
in the measured ROC area, compared to using the same 
width for all experiments. 

In the experimental results shown here, nC  was 
assumed known. We also found that the best detection 
performance occurred when using a completely 
uninformative prior, obtained by setting the 
hyperparameters 0α β= = . However the resulting 
RVM fit is quite stable over a large range of values for 
the hyperparameters, see for example Fig. 1c and 1d. 

6. CONCLUSIONS 

In this paper we used the Relevance Vector Machine 
(RVM) methodology to estimate the activation signal in 
functional neuroimages. This approach is based on a fast 
incremental method that requires significantly less time 

compared to the original RVM formulation [6]. Initial 
experiments with simulated phantom data that the 
proposed algorithm outperforms all methods reported in 
[4] and yields very close performance to the RJMCMC 
based method reported in [3]. However, unlike RJMCMC 
where the number of activations is determined by 
searching, RVM provides a method for their incremental 
determination, therefore it is extremely faster.   

TABLE I 

 PERFORMANCE COMPARISON 

Method Area under the 
ROC curve* 

RJMCMC 0.0818 
RVM 0.0732 

SVD thresholding, column centering 0.0624 
t-test, pooled variance estimate 0.0439 

SVD thresholding, Fisher, row centering 0.0387 
SVD thresholding, Fisher, column 

centering 0.0318 

SVD thresholding, Fisher, double 
centering 0.0311 

SVD thresholding, row centering 0.0252 
t-test, single-pixel variance estimates 0.0242 
SVD thresholding, double centering 0.0160 

* For false positive fraction between 0 and 0.1. 
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(a) (b) 

  
(c) (d) 

Figure 1. (a) - the average of 10 simulated activation 
patterns, (b) -  the average of 10 �activated� images, (c) -  
the activation pattern estimated by RVM with α=1, β=0, (d) 
� the activation pattern estimated by RVM with α=10-2, 
β=0 
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