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ABSTRACT

In this contribution we propose a coefficient-dependent and
time-variant step-size for the least mean square (LMS) algo-
rithm applied to adaptive second-order Volterra filters. The
optimum step-size is derived by introducing a novel optimal-
ity criterion which is given by the minimum mean squared er-
ror between the coefficient error of an adaptive Volterra filter
coefficient and the respective LMS update term of that co-
efficient. As the optimum step-size includes statistical terms
that are in general not accessible, we also present models for
estimating these quantities for the application in nonlinear
acoustic echo cancellation.

1. INTRODUCTION

The LMS algorithm represents a popular approach in linear
and nonlinear adaptive filtering [1],[2], not at least in the con-
text of acoustic echo cancellation. The general set-up of the
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Figure 1: General set-up of the acoustic echo cancellation
problem.

acoustic echo canceler (AEC) seeks to minimize the power
of the error signal e(n) by subtracting an estimate of the
echo signal §(n) from the microphone signal d(n). Here, we
consider situations, where the loudspeaker systems introduce
nonnegligible nonlinear distortions, e.g., caused by low-cost
loudspeakers driven at high volume. Thus, the AEC has to
be based on a nonlinear model to achieve an acceptable level
of echo attenuation. A common approach to modeling the
nonlinear behavior of loudspeakers is given by second-order
Volterra filters [3] which are, therefore, considered here.
This paper is organized as follows. In Section 2 we derive
an optimum step-size for the LMS algorithm applied to adap-
tive second-order Volterra filters based on a novel optimality
criterion. In order to discuss its properties, we introduce
a factorized version of the optimum step-size in Section 3.
For an actual realization of the optimum step-size, we addi-
tionally propose estimates for certain statistical terms that
are required but not measurable. It turns out that there
is a strong link between the proposed approximated step-
size and the proportionate normalized LMS (PNLMS) for
second-order Volterra filters [4]. Finally, simulation results
are presented in Section 4 in order to evaluate the perfor-

mance of both, the optimum step-size and its approximated
version compared to the normalized LMS (NLMS).

2. DERIVATION OF THE OPTIMUM
STEP-SIZE

In the following we assume that the unknown echo path,
i.e., the cascade of nonlinear loudspeaker and room impulse
response, can be modeled by a finite-length second-order
Volterra filter and, thus, the echo signal y(k) can be ex-
pressed by

y(k) = yi(k) + y2(k), (1)
where y1 (k) represents the output of a linear filter

Ni—1

vi(k) =Y " (k)z(k - 1), (2)

1=0

and y2(k) is the output of a homogeneous quadratic Volterra
kernel, i.e.,

No—1 Ng—1

=2 > al,®

11=0 ly=l;

(k—l)z(k —1l2).  (3)

Here, cl(l) (k) and 0(2) , (k) denote the coefficients of the linear
and quadratic Volterra kernel, respectively. The microphone
signal

d(k) = y(k) + n(k) + s(k) (4)

is composed of the echo signal y(k), the noise signal n(k)
accounting for background noise, and the speech signal of a
near-end talker s(k). In the following we assume that z(k),
n(k), and s(k) are zero-mean, mutually statistically indepen-
dent processes. Denoting the adaptive kernel coefficients of
the echo canceler by hl(l)(k) and hl(f?lz (k), the output of the
AEC reads

a(k) = 91 (k) + 1 (R). (5)
with
k) = KO Rk 1), (6)
=0
k) = Y Z WD, (k)z(k — h)a(k — ). (7)

11=0 la=l1

The coefficient errors of the linear and quadratic kernel co-
efficients are defined as

(1)(k) (1)(k’) . h<1>(k), (8)
mit, (k) = e, (k) = kD, (), ()
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respectively. The residual echos resulting from the misad-
justment of the linear and the quadratic kernel coefficients
of the AEC, respectively, yield

al) = Y mP®ak -0, (10)
=0
k) = Y3 mP (Ba(k— Lok - ). (11)

The overall residual echo (k) = y(k) — §(k) can then be
written as

e(k) = e1(k) + e2(k). (12)
The error signal e(k) = d(k) — y(k) is then given by
e(k) = e(k) + n(k) + s(k). (13)

The following considerations are based on the so-called in-
dependence theory [1], i.e., we assume that the input signal
z(k) is a zero-mean, independent identically distributed (iid)
process, and we assume that the coefficients of the adaptive
Volterra filter are statistically independent of the input z(k),

implying that the coefficient errors ml(l)(k) and mz(f,)zz (k) are
also statistically independent of z(k).

2.1 Optimum step-size for the linear kernel

The update of the linear kernel coefficients hl(l)(k) applying
the LMS algorithm [1] is given by

WV (k+1) = bV (k) + ul (k)e(k)x(k — 1), (14)

where ulm(k) denotes a positive step-size parameter to con-
trol the adaptation. However, the optimum update term for
hl(l)(k + 1) would in fact be the respective coefficient error
mgl)(k) if cl(l)(k) is time-invariant. Thus, it is very intuitive
to define a novel optimality criterion for the determination of
the optimum step-size ,ulm(k), namely, the mean squared er-

ror between mlm (k) and the LMS update term for hl(l) (k+1):
2
5= Bf [ ) - P eate-0] b a9

Here, E{-} denotes expectation. The step-size ,ulm(k‘) is then
chosen to minimize the cost function Ji, yielding

E{mg”(k)e(k)x(k - 1)}
E{e?(k)z?(k — 1)}

pi (k) = (16)

Note that the step-size according to (16) also assures con-
vergence w.r.t. the mean squared coefficient error, i.e.,

E{ [ Gk + 1)}2} - E{ [ml(l)(k)r} <0. (7

It can be easily verified that (17) is fulfilled if p{" (k) is
chosen according to

0 < ) (k) < 2uf, (k). (18)

l,opt
As z(k) is a zero-mean iid process, and regarding the defini-
tions (10)—(13), the numerator of (16) can be written as
2
E{mg”(k)e(k)m(k - 1)} - E{ [mg”(k)} } B{z*(k—1)}.
(19)

Accounting for the mutual independence of z(k), n(k), and
s(k), the denominator of (16) can be expressed by

E{e*(k)z*(k—1)} = (20)
E{(k)z*(k — 1)} + E{n®*(k) + s*(k)} BE{z*(k - 1)} .

For simplifying (16) we introduce the approximation
E{(k)2*(k — 1)} =~ E{e*(k)} E{2*(k - 1)} . (21)

It can be easily verified that in general (21) represents a valid

approximation if N; > 1, ¢ € {1,2}. Inserting (21) in (20)
and regarding (19) leads to a simplification of the optimum

step-size (16) according to
2
E{ [m )] }

= E{e2(k) + n2(k) + s2(k)}

A detailed discussion of the optimum step-size and its real-
ization is given in Section 3.

i) (k)

l,opt

(22)

2.2 Optimum step-size for the quadratic kernel

Next, we consider the derivation of the corresponding op-
timum step-size for the quadratic kernel coefficients. The
update equation for the quadratic kernel coefficients apply-
ing the LMS algorithm [2] is given by

h(2)

l1,l2

(k+1) = hy, (k) + 1l (ke(k)z(k — l)a(k — L2).
(23)

Analogously to Section 2.1, we obtain the optimum step-size
for the quadratic kernel coefficients by minimizing

g2 = B{ (21, 0 = 2 (eliyatl — et — )]}

(24)

with respect to /,Ll(i)l?(k), yielding
. - E{mgffh (kK)e(k)x(k — 1)a(k — 12)} ”
iy 1z,0p1 (F) = E{e2(k)z?(k — l1)x2(k — l2)} (25)

It can also be shown that convergence of the mean squared
coefficient error can be assured for
2 2

0< lu‘l(l,)lg(k) < Ziul(l,)lg,opt(k)' (26)

In order to obtain a simplification of the optimum step-size

(25) that corresponds to (22), we have to analyze the sta-

tistical properties of the coefficient errors ml(i)lz(k) for the

considered application in acoustic echo cancellation. The
results presented in [5] suggest that for white input z(k)

the coefficient errors of the linear kernel ml(l)(k) are mutu-
ally orthogonal for different [. Furthermore, we note that
the nonlinear acoustic echo path consists of the cascade of
a nonlinear part (loudspeaker) and a linear part (room im-
pulse response), where the linear component dominates the
overall echo path. As reported in [3], the characteristics of
the quadratic kernel of the corresponding Volterra filter rep-
resentation of the echo path are then mainly determined by
the characteristics of the impulse response of the linear ker-
nel. Thus, it is reasonable to assume that the coefficients
lying on the main diagonal of the quadratic kernel are also
mutually orthogonal, i.e.,

E{m<2>(k)m<2>(k)} =0, fori#j. (27)

1,1 7,3
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With the definitions (10)—(13) and regarding (27), we obtain
E{m?, (k)e(k)z(k — l)x(k —12) } =
my o, (R)e(k)a(k — )z (k — )
2
E{ [mgfgz (k)] } B{a?(k— L)z (k—12)}. (28)

In order to simplify (25), we introduce an approximation
similar to (21), i.e.,
E{*(k)z*(k — ) } ~
E{z—: (k) }E{:r — 1)z’ (k—12)} (29)
It can be shown that the approximation (29) is in general
valid for N; > 1, ¢ € {1,2}. The desired simplification

of the optimum step-size for the quadratic kernel is finally
obtained by regarding (28) and (29) for computing (25):

B{ [mi2, )]}

Efe?(k) +n?(k) + s*(k)}

(2) _
Mll,ZQ,opt(k‘) -

(30)

Comparing (22) and (30), the analogy between the optimum
step-sizes of the linear and quadratic kernel coefficients be-
comes obvious. However, it should be emphasized that for
the derivation of (22) no assumptions with respect to the
properties of the echo path are required, whereas (30) has
been derived with explicit reference to acoustic echo cancel-
lation.

3. DISCUSSION AND REALIZATION OF THE
OPTIMUM STEP-SIZE

For a better understanding of the optimum step-size, we in-
troduce the auxiliary step-size factors

B E{e*(k) +n*(k)}
uat(k) = E{e2(k) + n2(k) + s2(k)}’ (31)

_ W)
S EI R )

E{ei(k)}
E{e?(k)}
Note that pas(k) and pbn(k) represent kernel-independent

step-size factors, whereas pe, (k) and pe,(k) are kernel-
dependent but coefficient-independent step-size factors. Ad-

ditionally, we define
2
B{ [m" )]}

ue; (k) = 1 €{1,2}. (33)

Pk = o - , (34)
> B [0 w]} et m)
n=0
where the denominator in (34) equals E{e}(k)}, and
ai i, (k) = (35)

Ni_:l Ni_:l E{ {mﬁi{m (k)r} E{a®(k —n)a®(k —n2)}

n1=0 ng=n1

which represent coefficient-dependent step-size parameters.
Note that the denominator in (35) corresponds to E{e3(k)},

if (27) is applied. The above definitions of step-size factors
are used to factorize the optimum step-sizes according to

k) = pac(k) pon (k) pe, (k) ol k), (36)
T () pae (k) pon (k) pey (k) 2, (k). (37)

The influence of the different step-size parameters on the
control of the adaptation of the Volterra filter coefficients is
discussed in the following.

From the definition of pat(k) we notice that it accounts
for double-talk (dt) situations, i.e., for s(k) # 0. In the echo
cancellation context it is reasonable to realize pq¢(k) as an
on/off switch in combination with a double-talk detector,
i.e., pat (k) = 0 if a near-end talker is active in order to avoid
divergence of the adaptive filter coefficients, and pas(k) = 1
otherwise. The step-size factor pun(k) controls the adapta-
tion of the AEC with respect to the distortion introduced by
the background noise (bn) n(k). Several methods for the es-
timation of the combination pc(k) = pat (k) ubn (k) have been
presented in [6] for linear adaptive filters. With some modifi-
cations, these methods can also be applied to nonlinear AEC
and, thus, they are not discussed in more detail here.

For an interpretation of u.,(k), ¢ € {1,2}, we note that
the error introduced by a misadjusted linear kernel acts as a
distortion for the adaptation of the quadratic kernel and vice
versa. Hence, the step-size factors ue, (k) can be interpreted
as an adaptation control with respect to distortions caused
by the different misadjusted Volterra kernels. As follows
from (33), the determination of y., (k) requires knowledge of
e1(k) and e2(k) (or at least of the ratio of the second-order
moments of €;(k) and (k)) which is in general not accessible.
Therefore, we introduce a model for estimating the respective
second-order moments. More precisely we assume that the
second-order moment of the residual echo of the linear kernel,
i.e., €1(k), is proportionate to the output of the adaptive
linear kernel, i.e., §1(k) and, analogously, the second-order
moment of e2(k) is assumed to be proportionate to g2 (k):

E{e2(k)} ~ (k) [6 + B:(0)G: R (38)
where |§; (k)| denotes a smoothed version of the magnitude of
7:(k) and §; is a small constant which is required especially
in the beginning of the adaptation, where g;(k) = 0 if the
Volterra coefficients are initialized with zero. The approxi-
mation of p., (k) is obtained by introducing (38) in (33), and
assuming that the residual echo of the linear and quadratic
kernel are orthogonal, yielding

E{*(k)} = E{ei(k) +e3(k)} . (39)

Note that (39) holds if the probability density function of the
amplitude of (k) is an even function, as then E{2°(k)} = 0.
The proportionality factor v(k) does not have to be known
explicitly, as (33) can be reduced with respect to v(k).

The coefficient-variable step-size parameters al(l) (k) and

0‘1(12)12 (k) can finally be used to speed-up the adaptation of co-

efficients that cause large coefficient errors. However, the co-
efficient errors are not known and, therefore, we have to use
models for estimating the respective second-order moments.
A common assumption is that large coefficient magnitudes
also cause large error magnitudes (see, e.g., [7]). Conse-
quently, we assume that the second-order moment of a cer-
tain coefficient error is proportionate to the magnitude of
the corresponding adaptive coefficient:

[P ®]"h = 109 o+ 200 000 a0

72(k) [p2 + X (k) B2, ()] €41)
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where the proportionality factors v1(k) and 72(k) do not
have to be specified explicitly. Furthermore, we replace the
expectation operator with respect to z(k) in (35) and (34)
by the corresponding instantaneous values. m
Interestingly, the approximations (40) and (41) directly =
lead to the concept of the PNLMS for second-order Volterra E 10 optimum step-aize
filters [4], if A1(k) and A2(k) are chosen according to o —— approximated step-size
= NLMS
Ni—1 0 i i i : ‘
_ 1 0 05 1 15 2 25 3
MR = [Pw), (42) 2
=0 |
PSfrag replacements A
E e o ! Mﬁk M
—1 _ 2 201 | N A
Nk o= YY) h,m(/«)] . (43) - ‘, A
11=0 ly=l; S,
It should be mentioned that the NLMS algorithm repre- E 1or y  approximated step-size | |
sents a special case for the step-size presented here. Assum- Eé NLMS
ing that the magnitudes of all coefficient errors of both, the o ‘ ‘ ‘ ‘ ‘
linear and quadratic kernel are equal, i.e., 0 0.5 1 15 2 25 3

\mg”(k)‘:‘m(” (k)‘:m(k), Vi, la,  (44)

l1,l2

the product terms ,usl(k)oel(l)(k) and fie, (k)al(f?lz(k) are re-
placed by a kernel-independent normalization factor 1/C(k),

Clky=>_a(k—=0)+>_ > a°(k—h)2"(k—1s), (45)
=0 11=0 lx=l

resulting in the NLMS algorithm for Volterra filters [2]. The
product term punpms(k) = pas(k)pon (k) represents the step-
size control with respect to s(k) and n(k) according to [6].

4. SIMULATION RESULTS

To evaluate the performance of the proposed optimum step-
size, we present simulation results obtained for an acoustic
echo cancellation application. In the first experiment the in-
put has been colored noise with a power density spectrum
(pds) corresponding to the long-term pds of speech and the
echo path has been modeled by a second-order Volterra fil-
ter with memory lengths of 400 taps and 80 taps for the
linear and quadratic kernel, respectively. The same mem-
ory lengths have been chosen for the adaptive filter, i.e.,
N1 =400 and N2 = 80. As double-talk detection algorithms
are not in the scope of this paper, we set s(k) = 0 in the
following, implying pgt = 1. An SNR of 30 dB has been
preset with respect to n(k). As we are mainly interested
in the improvement resulting from the kernel-dependent and
the coefficient-dependent step-size parameters, a fixed value
tbn = 0.5is used. The echo return loss enhancement (ERLE)
that has been achieved using the optimum step-size param-

eters ue, (k), al(l)(k), and oal(f?l2(k) (assuming that the coef-
ficient errors are known) is shown in Fig. 2 together with
the result obtained for an NLMS algorithm with step-size
pNLMs = pbn = 0.5. Furthermore, the ERLE graph result-
ing from the approximation of the optimum step-size using
(38)-(41) are shown there. The model parameters for (38)
have been 6; = 0.001 and 3; = 1. Following [4], p1 = 1/2N12
and A1 (k) according to (42) have been chosen for the linear
kernel. For the quadratic kernel p2 = 1/(N3 + N2) and Az (k)
according to (43) have been used. As can be noticed from
Fig. 2, both the optimum step-size and its approximation
clearly outperform the NLMS algorithm in terms of conver-
gence speed. The optimum step-size is significantly superior
to the approximated version as it does not rely on model as-
sumptions. The ERLE graphs presented in Fig. 2 (bottom)
base on recorded speech data from a low-cost loudspeaker
in an enclosure with low reverberation, where the same pa-
rameters have been applied as in the previous experimental

time [s] —

Figure 2: ERLE for LMS with optimum step-size and ap-
proximated step-size compared to NLMS for stationary col-
ored noise input (top), and recorded speech data (bottom).

set-up. Note that only the results obtained for the approx-
imated step-sizes and the NLMS algorithm are shown here,
as the physical echo path is not known and, thus, the opti-
mum step-sizes (22) and (30) cannot be determined. Again,
a remarkable increase in convergence speed is achieved by
the proposed coefficient-dependent step-size compared to the
NLMS algorithm.

5. CONCLUSION

We presented a novel step-size control for the LMS algo-
rithm applied to adaptive second-order Volterra filters. The
derived optimum step-size has then been approximated, as a
direct implementation is not possible due to non-accessible
statistical terms included in the definition of the optimum-
step-size. Simulation results with respect to nonlinear acous-
tic echo cancellation using adaptive second-order Volterra
filters have shown that the proposed step-size control for the
LMS algorithm leads to a significant improvement of conver-
gence speed compared to an NLMS algorithm.
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