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ABSTRACT
We study in this communication the statistical spatial prop-
erties of the residual speckles in the Point Spread Function
(PSF) of a large telescope with Adaptive Optics. These
speckles form a noisy background outside the PSF central
core, which makes it very difficult to detect an exoplanet. It
can be shown that these speckles are due to small defaults
of the wavefront, amplified by the coherent part of the wave.
Using reasonable physical assumptions, their statistics is de-
scribed by a modified Rice distribution. A simple analytic
form can be derived for the Moment Generating Function
(MGF). Analytical expressions can also be obtained for the
statistics at photon counting levels. Using properties of the
MGF, simple expressions are obtained for the variances of
the noise. We discuss the relative importance of speckle and
photon noise and present conclusions on the limits of coron-
agraphy for the detection of an exoplanet.

1. INTRODUCTION

Direct imaging of an extrasolar planet, orbiting a nearby star
is an ambitious project with strong astrophysical drivers, in-
cluding for example the study of planet formation and the
search for life. At the present time, 119 exoplanets have been
detected using radial velocities or transits [19]. The required
angular resolution is already achievable with today’s tele-
scopes. The main problem comes from the extremely large
intensity ratio between the star and the planet, typically be-
tween a million and a billion, depending on wavelengths and
particular science goals.

Several nulling or coronagraphic techniques have been
proposed to cancel the star light and achieve such a direct de-
tection [3]. Several Instrumental projects are under construc-
tion or study for ground or space based observations. The
problem is to detect a very faint pattern (the planet) over a
bright background produced by the star diffraction wings. In
the case of ground based observations with Adaptive Optics
(AO) the uncorrected aberrations of the wavefront produce
random intensity fluctuations of this background (residual
speckles). Even at very high AO corrections, those speck-
les still exist, and are ”pinned” on the first diffraction rings
for short exposure images [6, 20, 5, 18].

We study the statistics of these pinned speckles, and eval-
uate the usefulness of a coronagraph. A very simple mod-
elling of the wavefront amplitude permits to obtain the Prob-
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ability Density Function (PDF) of residual speckles at high
light level of AO correction. The photon counting statistics
is then derived by Poisson-Mandel transform. Similar results
can be obtained using Moment Generating Functions (MGF).
From a practical point of view, the relevant information
comes from the comparison of the variances of the noises
coming either from the coherent part of the wave (that can
be suppressed by a coronagraph) or by the residual speckles
(that cannot). We emphasize in this study that speckles are
amplified by the coherent part of the wave, if they are not
suppressed by a coronagraph. The relative weights of these
noises are represented by the expressions for their variances,
and the usefulness of coronagraphs in the different regimes
is discussed.

2. STATISTICAL MODEL FOR THE WAVE
AMPLITUDE AND LIGHT INTENSITY

In this section, we introduce a model to describe the statis-
tical properties of the light intensity at high AO corrections.
This model was proposed by Goodman [12] for laser speck-
les (in the context of holography) and applied to AO images
by Cagigal and Canales [7, 10, 9, 8, 11] mainly for the study
of the statistics of AO images, as a function of the degree of
correction.

2.1 Statistics of the wave amplitude

In the general case, the wavefront amplitude at the entrance
pupil can be written as the coherent sum of two terms, a de-
terministic term A corresponding to a perfect plane wave and
a random term a(x,y) corresponding to the uncorrected part
of the wavefront (either phase or amplitude errors):

Ψ1(x,y) = [A+a(x,y)] P(x,y), (1)

where the function P(x,y) describes the aperture transmis-
sion. The complex amplitude of the wave in the focal plane
is given by a scaled Fourier Transform of this pupil amplitude
[14]:

Ψ2(x,y) = F [Ψ1 (x,y)] x
λ f , y

λ f
(2)

where f denotes the telescope focal length, λ the monochro-
matic wavelength and the symbol F the Fourier Transform
(FT). The focal complex amplitude can be written as the sum
of two complex amplitudes:

Ψ2(x,y) = A×F [P(x,y)] x
λ f , y

λ f

+F [a(x,y)×P(x,y)] x
λ f , y

λ f
(3)

= C(x,y)+S(x,y) (4)
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The deterministic term C(x,y) = A F [P(x,y)]x/(λ f ),y/(λ f )
is proportional to the wave amplitude without atmospheric
turbulence. The second component is a random term, associ-
ated to the speckles:
S(x,y) = F [a(x,y)×P(x,y)]x/(λ f ),y/(λ f ).

Whatever the statistics of a(x,y), the complex ampli-
tude S(x,y) follows a circular gaussian distribution, thanks
to the central limit theorem, assuming a large enough num-
ber of independent phasors on the pupil. Therefore, the
wave complex amplitude in the focal plane Ψ2(x,y) fol-
lows gaussian law, decentered by the mean of the amplitude
< Ψ2(x,y) > = C(x,y).

This problem is equivalent the study of speckles over a
coherent background and the statistics of Ψ2(x,y), given by
Goodman [13] is:

P(Ψ(r)
2 ,Ψ(i)

2 ) =
1

πIs
exp

(
−(Ψ(r)

2 −C)2 +(Ψ(i)
2 )2

Is

)
, (5)

where Ψ(r)
2 and Ψ(i)

2 denote the real and imaginary part of
Ψ2(x,y). We omit the variables (x,y) everywhere, for clar-
ity. We also use the notation Is =< |S(x,y)|2 > for the mean
intensity of the speckle term.

The deterministic term C(x,y) is a complex quantity.
However, for an aperture with symmetries, C(x,y) can be
real. For example, in the case of a circular aperture of di-
ameter D, we obtain the Airy amplitude C(r) = D J1(πDr)

2r ,

with r =
√

x2 + y2

2.2 Statistics of the PSF light intensity in the residual
speckle zone

The instantaneous intensity in the focal plane is the modulus
squared of the amplitude:

|Ψ2(x,y)|2 = |C(x,y)+S(x,y)|2 (6)

= |C(x,y)|2 + |S(x,y)|2 +2Re[C∗(x,y)S(x,y)].
(7)

The term coupling the two deterministic and random parts (C
and S) corresponds to the so-called ”speckle pinning”, dis-
cussed by several authors [6, 20, 5, 18].

The mean intensity (long exposure image), is simply the
sum of the deterministic diffraction pattern with a halo pro-
duced by the average of the speckles.

< |Ψ2(x,y)|2 > = |C(x,y)|2+ < |S(x,y)|2 >

= Ic + Is, (8)

with < S(x,y)∗ >=< S(x,y) >∗= 0 (circular gaussian distri-
bution). Ic = |C(x,y)|2 is the intensity of the deterministic
part of the wave, and Is =< |S(x,y)|2 > as previously. For a
totally developed speckle structure, the intensity Is is a con-
stant, but a function of the radial distance r for a AO halo.
The long exposure image is therefore the sum a term propor-
tional to the perfect impulse response (Airy pattern) and a
halo.

The statistics of the light intensity can be derived from
that of the complex amplitude. The marginal PDF for the
intensity, known as a modified Rician density, was given by

Goodman [13] and also used by [7]:

PI(I) =
1
Is

exp

(
− I + Ic

Is

)
I0

(
2
√

I Ic

Is

)
, (9)

This Rician distribution is illustrated in Fig.1, for a same
speckle intensity Is and several continuous intensities Ic.

The corresponding MGF (Laplace transform of the PDF),
finds an analytical expression of the form :

M(u) =< exp[uI] >

= exp

(
Icu

1− Isu

)
1

1− Isu
(10)

P(I)

I

Ic=0

Ic=0.25

Ic=2.25
Ic=1

Figure 1: Superimposition of intensity PDFs (grey shades)
for four continuous background level Ic and same value of
Is = 0.1. The width of the distribution strongly increases with
the level of continuous from Ic = 0 to Ic = 2.25. This result
shows the amplification of the speckle by the coherent part
of the wave (speckle pinning).

At photon counting levels, the PDF suffers a Poisson-
Mandel transformation. An analytical expression of the light
intensity probability can be obtained:

P(n) =
1
n!

∫ ∞

0
PI(I)In exp(−I)dI (11)

=
1

Is +1
(1+

1
Is

)−n exp
(
− Ic

Is

)
1F1

(
n+1;1;

Ic

I2
s + Is

)
,

where 1F1 is the Kummer confluent hypergeometric func-
tion. An equivalent expression was used by Cagigal
and Canales [9] using the Laguerre polynomial, related
to the Hypergeometric function by the relation: 1F1(n +
1,1,x) = Ln(−x)exp(x). This distribution is illustrated in
Fig.2.

The MGF at low light levels is easily obtained from the
high light level MGF, making the simple change of variable
u → exp(u)−1. We obtain :

M(u) =
1

1− (exp(u)−1)Is
exp

(exp(u)−1)Ic

(1− (exp(u)−1)Is)
(12)

2.3 Statistics of the intensity at the planet position

In the previous section we have studied the statistical prop-
erties of a speckle pattern when a coherent amplitude was
added to it.

1072



0 1 2 3 4 5 6 7 8 9 10

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 1 2 3 4 5 6 7 8 9 10

0.05

0.1

0.15

P(n) P(n)

n n

Ic=1
Is=0.01

Ic=1
Is=0.01

Figure 2: Illustration of the low flux statistics of AO speckles
(Eq.11), for an arbitrary speckle intensity Is = 0.01 and two
different values of Ic.

We also have to study the problem of incoherent intensity
added to a speckle pattern, corresponding to the planet light
added to the star speckle background. We shall assume that
the planet adds a constant value m in one pixel only, and use
the approach developed by Aime [2]. The PDF is simply
shifted of the quantity m, so that:

PI p(I) = PI(I−m) (13)

and the MGF is therefore multiplied by a term exp(mu):

Mp(u) = M(u)exp(mu) (14)

Using the same change of variable as above, the photon
counting MGF for a pixel at the planet position becomes :

M(u) =
1

1− (exp(u)−1)Is
exp

(exp(u)−1)Ic

(1− (exp(u)−1)Is)
× exp(m(exp(u)−1)) (15)

These distributions can be used for a deeper understanding of
several speckle techniques proposed for the detection of exo-
planets, like the dark-speckles [16]. However, in the present
communication, we focus the presentation on noise fluctua-
tions alone, and study their possible reduction, using coron-
agraphic techniques.

3. VARIANCE OF THE INTENSITY

In this note, our goal is to determine under what conditions
the use of a coronagraph will substantially reduce this vari-
ance (suppressing the coherent term that amplifies the speck-
les), when is it is worth constructing such a device (a very
elaborated and expensive interferometric device). The vari-
ance of the intensity at and around the planet location in the
image can be used as a simple criterion for that. The vari-
ance of the speckles alone can be obtained by several ways:
one is to express the second order moment < I2(x,y) > with
C(x,y) and S(x,y) and to use the properties of gaussian distri-
butions [12, 13]. The moments of Eq.9 also find an analytical
expression [12]:

< In >= In
s exp

(−Ic

Is

)
n! 1F1

(
n+1,1,

Ic

Is

)
(16)

The easiest way is probably to compute them from the
MGF, using the relation < In >= M(n)(0). Whatever the
mean used, we obtain:

< I >= Is + Ic (17)

< I2 >= I2
c +4IcIs +2I2

s (18)

and the variance:
σ2

I = I2
s +2IsIc (19)

This result was discussed by Goodman for the addition of
a laser speckle pattern with a continuous background, and
by Cagigal and Canales (reference herein) for the study of
corrected PSF intensity statistics as a function of the degree
of correction.

At low light levels, we must take into account the vari-
ance associated with photodetection (Poisson process) and
the total variance becomes:

σ2 = σ2
I +σ2

P (20)

where, σ2
P is the variance associated to the poisson statistics.

With our notations, σ2
P = Ic + Is. The total variance is:

σ2 = I2
s +2IsIc + Ic + Is (21)

This result can be also directly obtained from the photon-
counting MGF. Now we will see that the variance at the
planet position is the same. The variance of the high light
level signal is unaffected by the planet, which is a simple in-
tensity shift (this is verified using the MGF for the planet).
The planet contributes to the overall variance by the quantity
m, its own photon variance. In all cases of interest this term
can be neglected compared to the others.

4. DISCUSSION

The goal of stellar coronagraphy is to remove, as best possi-
ble the star diffracted light, using optical filtering. Coronag-
raphy basically consists of using two masks (opaque or phase
shifting), in the focal plane and in a relay pupil plane. Some
coronagraphs can reach a total star extinction in the perfect
case [4, 21, 1], rejecting all the star energy outside the tele-
scope aperture, in a relay pupil plane. However, in presence
of residual aberrations, those coronagraphs will only work
on perfect part C(x,y) of the wave, whilst the speckle part
S(x,y) will remain mostly unaffected.

The model we presented in this communication provides
a tool to understand how a coronagraph can reduce the noise
variance and improve the detection limit of an exoplanet. Let
us partition for that the total variance of Eq.21 into two con-
tributions, one coming from the continuous background Ic
and the other one from the speckle term Is:

σ 2 = σ 2
c +σ 2

s (22)

= (2IsIc + Ic)+(I2
s + Is), (23)

with σ2
c = 2IsIc + Ic and σ2

2 = I2
s + Is. A coronagraph will

only have an effect on the term σc.
• If Ic << Is, far from the optical axis or with a perfect

coronagraph, then the variance reduces to σ 2
s = I2

s + Is
and Is = 1 photon per pixel is a limit of regime (the vari-
ance is dominated either by the speckle noise, or by the
photon noise).

• If Ic >> Is, close to the optical axis (on the first diffrac-
tion rings) or without any coronagraph, the variance be-
comes σ2

c = 2IcIs + Ic. One photon per pixel is also a
limit of regime.

• The transition domain for Ic = Is leads to the variance
σ2

I = 3I2
s +2Is
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A coronagraph will be efficient in the part of the focal
field where σ2

c > σ2
s . We can deduce the following criterion

for coronagraphic efficiency:

σ 2
c > σ 2

s

Ic >
Is(Is +1)
2Is +1

. (24)

At high flux, Is >> 1 and the condition of Eq.24 is equivalent
to I(1)

c > Is
2 . At photon counting rates Is << 1, this limit is

equivalent to I(2)
c > Is. In both cases, the order of magnitude

is similar, and does not depend on the number of photons. We
can conclude that for either low or high flux, a coronagraph
is efficient as long as Ic > Is, in terms of S/N.

log( ²)s

r

sc²

ss²

Figure 3: Illustration of σ2
c and σ2

s , as a function of the ra-
dial position in the focal plane, without coronagraph. The
simulation is made for a 3.6m telescope in the H Band with
a Strehl Ratio of 90%. This simple simulation corresponds
to the Lyot project coronagraph on the AEOS telescope in
Hawaii [17]. A coronagraph will be efficient everywhere the
variance σ2

c (hard line) is greater than σ2
s (dashed line). This

simulation correspond to a high flux regime and is indepen-
dent of the exposure time.

As a conclusion, we have presented a statistical model
that can provide a valuable tool for the analysis of a corona-
graph, at high flux or photon counting rates. This work will
be extended to actual S/R computations, based on this for-
malism. A coronagraph for a given telescope and AO, should
reduce the contribution σ2

c lower than σ2
s everywhere in the

field. This is illustrated in Fig.3, using the PAOLA software
of the AO simulation [15]

Several other noise terms are involved and have not been
taken into account in this study. In particular, a coronagraph
will provide also a gain on the read out noise, allowing in-
creased exposure time.
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