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ABSTRACT

This paper provides a new analytic expression of the
RMS (Root Mean Square) error and bias of the Maximum
Likelihood (ML) Direction Of Arrival (DOA) estimator in
the presence of steering vectors modeling errors. The refer-
ence [4] proposes a first order approximation of these per-
formances which is adapted to small modeling errors. In
order to take into account larger modeling errors and pro-
vide tools for designing experimental set-up, a more accu-
rate and easily usable derivation of these performances is
necessary. For such an investigation, the DOA estimation
errors are written as an hermitean form with a stochastic
vector composed by the modeling errors. Finally, a closed
form expression between the performances (bias and RMS
error) and statistical moments of the model error are de-
duced from the statistics of the hermitean form. Simulations
confirm the theoretical results.

1. INTRODUCTION

It is well-known that high resolution methods [1][2] are
sensitive to inadequacies of the reception model. Despite its
great interest for designing an experimental set-up, few
works were related to the analytical quantification of the
degradation introduced by modeling errors of the reception
network. On the assumption of small modeling errors
B.Friedlander [4] presented a first order analysis of the ML
algorithm. However by confronting his theoretical results
with simulations in the presence of larger modeling errors,
the proposed performances do not take into account well the
RMS error obtained by simulations; the closed form expres-
sions of [4] are generally optimistic. A more accurate rela-
tion between larger modeling errors and the DOA estimation
performances is necessary for the design of a DOA estima-
tion system, like specifications of the material (receivers,
antennas , ...) for a performance target. The purpose of this
paper is to provide a new expression of the RMS error and
bias of the DOA estimation errors of the ML algorithms in
the presence of modeling errors [3][5] with a second order
analysis.

The covariance matrix of the signals is assumed to be
known : asymptotic case. The modeling errors are random

variables without assumptions on their probability law. It is
shown that the DOA errors can be written as a compact
hermitean form of multi-variate complex random variables
(steering vectors modeling errors) whose statistical proper-
ties are well-known. This key result allows easily the ML
performances derivation : the bias depends on the second
order statistics of the steering vectors errors and the RMS
error on the fourth order whatever the probability density
function of the model errors.

2. SIGNAL MODELING AND PROBLEM
FORMULATION

A noisy mixture of M narrow-band sources with DOAs
6, (1<m<M) is assumed to be received by an array of N sen-
sors. The associated observation vector, x(¢), whose compo-
nents x,(f) (1<n<N) are the complex envelopes of the signals
at the output of the sensors, is thus given by
M

()= 49, 5,()+n@)=A@,) sO)+n@), (1)
m=l1
where 4(8) is the steering vector of a source in the direction
0, A(G)=[a(6°)...4(0)], 6=] 6°... O], n(p) is the sup-
posed spatially white noise vector and s,,(f) is the complex
envelope of the m™ source. By noting a(@) the steering
vector used in the algorithm, the modeling errors e,, of the
m™ source is defined by:
€n= ﬁ(gmo)' a( Hmo): ﬁm - ap, (2)
where @(6,)=4,, and a(8,)=a,. In the sequel, ()" is the
transposition operator. In these conditions the matrix A(&)
is a function of E with E=[e; ... e;] and can be noted
A(6.e)=A(&) where e=vec(E) =[e;" ... ey ']" and:
A(h)= A(G)E. €)
In particular A(6)=A(6&,e=0)=[a; ... a,]=A, .This model-
ing error can be adapted to all kinds of distortion such as
sensors error position[3] and mutual coupling effects [5].
The estimation problem under consideration is to esti-
mate the M DOA parameters 6?10,. e 6, with the ML algo-
rithm where R.(e)=E[x(?) x(f)"] and M are assumed to be
known (E[.] is the expectation mean and " defines the conju-
gate-transpose). R,(e) can be expressed as:

Rx(e) = A(_9()se) P A(_909e)ﬂ+ 62 IN» (4)
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where P= E[s(7) s(#)""] and I is the NxN identity matrix.
However, A(6),e) must be full rank. The conditional ML
algorithm [2] assumed that the signal of the input sources
are deterministic and the noise n(t) is Gaussian with E[n(?)
n(?)'"]=6 I. Thus the unknown parameters are 6 and c".
The associated likelihood criterion leads up to the minimi-
zation of the criterion ¢, (8, e) with &

cur(8, e) = trace(I1(6) R.(e)), )

where &=[ 6,... 6] , trace(A) is the trace of the matrix A
and I1(6) is the projector such that :

(& =1y- A A, (6)
where A(&)=[a(6))...a(6))], a(0) is the array manifold used
in the algorithm and * defines the Moore-Penrose pseudo-
inverse such as: A"A=I,,. As I1(6)) A(&))=0 due to the or-
thogonal property of T1(6), according to (4) the ML algo-
rithm criterion checks :

cur(€,e=0) > cyu(6 e=0)= *(N-M) , @
where in this case a,=4,, for (1<m<M). When a,#a,, the
criterion becomes ¢, (0,e)> *(N-M) and presents a local
minimum in the direction QO =[ 91 ...QM ] different from 6,.
The random variable AG,= 0, -6, defines the DOA estima-
tion error of the direction of the m™ source; one seeks to
evaluate its bias E[A),,] and its RMS error noted RMS,, :
RMS,,’=E[A6),’]. The purpose of this work is to provide the
moments of the random variable AG,= 0, -6,, up to the sec-
ond order in ||e|| instead of first order as in [4].

3. LINK BETWEEN MODEL ERRORS AND DOA
ESTIMATION ERRORS

The purpose of this section is to give a relation between
the random variables A, and the modeling error vector
e=[e,"...e)']". According to (4) and (5) the ML criterion in
&=6, 1s a function of e:

cu”'(e) = trace(Tly Ry(e) ), (®)
where IT= Iy — Ay A, After a second order Taylor expan-
sion in @ of cy;(6,e) around &=¢), the expression of the
DOA estimation error A@=[A6; ...AGy]" becomes according
to [2]:
AG=-H(e)" V@), ©)
where the gradient vector V(e) checks:

Vo(e)=-2R(diag(A," Ry(e) II A, )), (10)

and where R} | indicates the real part , A =[a,...a, ],
a,, is the first derivative of the steering vector a(6) at 6, and
diag(A) is a vector composed by the diagonal elements of
the matrix A. The Hessien matrix H(e) checks :

H(e)=2R(( A," Ty A,)O( A" Ry(e) (AN,  (1D)

where ® is the Hadamard product. Using the previous as-
sumption, we now show that the elements of the vector A@
can be provided in hermitean forms of vector e=[p" €]’
with p=[1 e']". Using (3)(4) and (10) the gradient vector
becomes:

Vo(e)=-2R(diag(PE" II, A,))

- 2R(diag(A," EPE"II; A,)). (12)

Using expressions (3)(4) and (11) the hessien matrix H(e)
can be rewritten as following:
H(e)= Hy+ dH(e)
with Hi=2R(( A," I A,)@P+c’ (A" Ag)™")"),
and dH(e)=2R(( A," I, A,)®( U(e) P U(e)"- P)")
and U(e)=I,+ A, E. (13)

It is shown in appendix A that the second order Taylor ex-
pansion of expression (9) around e=0 verifies:

AQ=-Hy " Vo(e)+ Hy ' AH(e) Hy ' V() +o(lel’) (14)
where :

AH(e)=4R(( A," I, A,)®( A, EP)") (15)

and:
(16)
In reference [4] the authors used the following first order
Taylor expansion of AG:

AGy=-Hy" V(e) +o([e|]) (17)

In order to transform expression (14) of A@ in hermitean
forms, the following relations are used:

u” EM v=e" (u*®v)= p" Q,(u,v) p

Vi(e) = -2R(diag(PE"II, A,))

with Q(u,v)= 0 0 and q;(u,v)=u*®v
u*®v (18)
with p=[1 ¢']" and:
u"EPE" v=p" Q,(u,v)p
~10 0"
where Q,(u,v)
0 P"®(vu") (19)

Let us note (Ay")"'=[g;... g»] and P=[p,... p,J; the m™ com-
ponent of V(e) becomes according to (12)(18) and (19):

V(€)= 1" Qu, p With Qy,, =-Qy,o— Quig”
and Qv = Qi(gms lha, )+ Qa(pws Ihha,,) (20)
Thus the m™ component A6, Yof AG'=- Ho'lVo(e) becomes:
M
AG,'=p"Q,' n with Q,'= -ZHO’1 (m,i) Qui  (21)
i=1

where Hy '(i,j) is the i/ element of Hy'. The m™ compo-
nent b, of b=H," V,(e) becomes according to (16) and (18):

bm = 'Zm( eH qm)

. M .
with @,= > H " (m,i) (P*©ILa,))

i1 (22)
The m" row and " column of B=4H,"R((A," IT, A,)®(
A" E P)") then becomes according to (15) and (18):

B, = 4m(qmiH e),
. M . .
with q,,= Z H071 (m, k) (Pr*® ) (akH Iya,)*.
k=1 (23)
Knowing that 4 R(a) R(b)=2 R(a b) +2 R( a b*), one then
has B,;b, = -4 (SR(eH q; q,,,,-H e) + R( ell qi qu e¥)) and the
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m™ component A8,” of AG’=B b =H, ' AH(e) H, " V,(e)
is:

A8, =¢€"Q, e with e=[1 e" "] (24)
and:
o 0 0 0
sz :_ZZ 0 qiqmiH qiqmiT (25)

i=1

0 q,9" 4'a,

According to (14) (21) and (24) we finally obtain that
AO=AO'+AH?* and that the m"™ component A, of AG veri-
fies:

1
AG,=€"Qus with Q=L 01+Q,7 (54
0 0
with e=[1 e" e"']". This last expression is the key equation of
this paper.
4. BIAS AND RMS ERROR OF ML

The purpose of this section is to provide the moments of
an hermitean form A6,= g" Q,, £ in order to derive the bias
and the RMS error of the ML algorithm. Using that :

E[x" Q x = E[ trace( Q x x" )|= trace(Q E[x x"]), (27)
the bias of the m™ source is given by the following expres-
sion according to (26):

E[A8,]= trace(Q,, R;) with R=E[¢€"]
Using the equality (AB) ® (CD)=(A®C)( B&D) :
x"Qx)y=x"Qx)® (x"Qx)
=(x"@x")(Q x)®(Q x))
=(x"®x")((Q®Q) (x®x)) = (x*)" Q™ x** (29)
where u®’= u®u. According to (26) (27) and (29), the RMS

error of the m™ source is thus given by the following expres-
sion:

RMS,= \/trace(Q, R?) with R} =E[ % €]

According to [6], in the gaussian case, R is given as a
function of R, and C.=E[ & €']:

(28)

(30)

R1,1 R1,1+2NM
R! = : : (31)
R1+2NM,1 R1+2NM,1+2NM
with:
R, =R, R, (i, j)+r, ()r, ()" +¢,()e, ()" -2 8,8,11"  (32)
where 1=[1 0"]", C=[ ci(1)... c.2NM+1)], R=[ r(1)...

ro(2NM+1)], Cy(ij) and Ry(ij) are the i line and /™ column
of the respective matrices C; and R, and §; =1 for =1 and 0
in the other cases.

5.  SIMULATIONS

In the case of M=2 sources of DOAs 6,=100 degree and
variable 6, figure 1 and figure 2 compare the estimated per-
formances of the first source (RMS error) by simulation on

1000 achievements, with the theoretical performances found
in this paper and those of reference [4]. The array of N=5
sensors is circular with R/A=1. There is no additive noise
(6=0) on the observations. The elements of the sources
covariance matrix P check: P(1,1)=P(2,2)=1 and
P(1,2)=P(2,1)=0.8. The steering vector modeling error is
Gaussian and circular with E[e e"]= &.” Iy, More precisely
in figure 1, the comparison is carried out as a function of the
modeling error level o, when 6€,=86° where as it is made
out as a function of |- 6| with 6. =0.26 in figure 2.

The simulations show that the proposed expression of
the RMS error of this paper at the 2™ order is in adequation
with the simulation results and that the first order is not rep-
resentative for 6.>0.15 in figure-1 and for |6-6,|<20° in
figure-2.
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Figure 1: RMS; according to the level of the Gaussian
modeling error : 6-6,=14°.
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|0,—6,| in degree
Figure 2: RMS; according to |-6,| : 0.=0.26.

6. CONCLUSIONS

This paper has proposed a second order Taylor expan-
sion of the analytic expression of the bias and RMS error of
the DOA estimation of the ML algorithm. The DOA estima-
tion errors have been written as hermitean forms with a sto-
chastic vector composed by the steering vectors errors. This
hermitean form allowed us to easily deduce the bias and the
RMS error of the ML algorithm. This new closed form ex-
pression of performances is representative of the simulation
results for larger modeling errors than in reference [4] and
provides a tool for material designing.
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APPENDIX-A

The purpose of this appendix is to demonstrate the expres-
sion (14) of A@=f(e). The second order Taylor expansion of
fle)=—H(e)" V(e) checks around e=0:

AG= fle) = fle=0) + dfie=0)+% d’fle=0)+o(le]?)  (33)

where df{e) and d*f(e) are the first and second derivative of
fle). According to (9) the expression of df{e) is as follow-
ing:

dfie) = —d(H(e) ") Vo(e) — H(e) ' d(Vo(e)) (34

where d(M) is the first derivative of M. Knowing that the
first derivative d(M™)=—M"d(M) M, df(e) becomes:
dfie) = H(e) ' d(H(e)) H(e)'V(e) — H(e) ' d(Vo(e)) (35)

Using that according to (13) H(e=0)=H, and that V(e=0)=0
according to (12), df(e=0) can be rewritten as following :

dfie=0) =~ Hy" d(Vo(e))eo (36)

where d(Vo(e))eois the first differential of V(e) around e=0.
Appendix-B shows that :

d(Vo(€))eo= V() = -2R(diag(PE"TI, A)))  (37)

According to (35) and using that d(M™"y=- M"' d(M) M, the
expression of d*f(e) is as following:

d’fle) =-H(e)™ d(H(e)) H(e)"' d(H(e)) H(e) 'V(e)
+H(e)" d*(H(e)) H(e)"' Vo(e)

~H(e)" d(H(e)) H(e)" d(H(e)) H(e) ' V(e)

+H(e)" d(H(e)) H(e) " d(Vi(e) )

+H(e)" d(H(e)) H(e) " d(Vi(e))

—H(e) ' d’(Vo(e)) (38)
where d*(M) is the second derivative of M. Using that
H(e=0)=H, according to (13) and that V,(e=0)=0 according
to (12), d*{e=0) can be rewritten as following :

d*f(e=0) = 2 Hy™ d(H(e)) o Hy " d(Vo(€))eco
—Hy ' d(Vo(€)eo (39)
where d*(V(e)) is the second differential of V,(e) around
e=0. Appendix-C shows that :
d(Vo(e))eo= - 4R(diag(A" EPE"TL A,)).  (40)
Appendix-D shows that the first differential d(H(e)).—o of
H(e) around e=0 in equation (39) is as following:
d(H(e))e-o= AH(e)=4R((A," Ty A )O(ASE P)") (41)
Noticing that Vo(e)= d(Vo(e))eo + d*(Vo(€))ewo and using
(36)(37) (39) and (41), the expression (33) becomes:
fley=—H, ™" Vo(e)+ Hy ™' AH(e) Hy ' Vi(e) +o(llelf’) (42)
and equation (14) is proven.

APPENDIX-B

The purpose of this appendix is to show that relation (37) is
verified around e=0. Using expression (12), d(V(e)) be-
comes:

d(Vo(e)) =—2R(diag(Pd(E) "I, A,))
— 2R(diag(A," d(E) PE" T, A,)))

~2N(diag(A EPAE)' T A,)  (43)
According to (43), the expression (37) of d(Vo(e))e—o 1s
proven because around e=0, E,=A(&),e=0)-A,=0 and
d(E)=E- E\=E.

APPENDIX-C

The purpose of this appendix is to show that relation (40) is
verified around e=0. According to equation (43), d*(V(e))
is:

d*(Vo(e)) = - 4R(diag(A," d(E) PA(E)'TIy A,))  (44)
According to (44), the expression (40) of d*(Vy(e))eo is
proven because around e=0, E0=A(_Ho,e=0)-A0=0 and d(E)=
E- E=E.

APPENDIX-D

The purpose of this appendix is to show that relation (41) is
verified around e=0. Using expression (13), d(H(e)) be-
comes:

d(H(e) =4R(( A, "I A,)o(dU(e) PU)")")  (45)

where dU(e) = Ay"d(E) and U(e)= I+ A," E. Equation (41)
of d(H(e))e-p is then proven because around e=0,
Ei=A(6),e=0)-A,=0, d(E)= E- E,=E and U(e=0)=1,,.
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