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ABSTRACT

This paper investigates the multiple windows of the mean
squared error optimal time-frequency kernel for estimation
of the Wigner-Ville spectrum. The kernel is optimal for a cer-
tain locally stationary process where the covariance function
is determined by two one-dimensional Gaussian functions.
The multiple windows are obtained as the eigenvectors of the
rotated time-lag estimation kernel. The spectrograms from
the different windows are weighted with the eigenvalues and
the resulting multiple window spectrogram is an estimate of
the optimal smoothed Wigner-Ville spectrum.

1. INTRODUCTION

The area of time-frequency analysis is well covered in the
signal processing literature. A lot of work is done concern-
ing deterministic signals disturbed by noise but the area of
time-frequency analysis of time-varying stochastic processes
remain limited, [1].

The Wigner-Ville spectrum (WVS) of a process exists
due to the assumption of harmonizability. It can be estimated
from realizations of the process using Cohen’s class of time-
frequency (TF) representations, which are determined by a
TF kernel function. The mean squared error optimal solu-
tion to this problem has been obtained by Sayeed and Jones
[2]. Instead of calculating the two-dimensional convolution
between the optimal kernel and the Wigner-Ville distribution
(WVD) of a process realization, the calculations can be sim-
plified with use of multiple windows. The time-lag estima-
tion kernel connected to a optimal TF kernel is rotated and
smoothed and the corresponding eigenvectors and eigenval-
ues are calculated. The estimate of the WVS is given as the
weighted sum of the the spectrograms of the data with the
different eigenvectors as sliding windows. The weights are
the eigenvalues, [3, 4]. The fewer eigenvalues that signifi-
cantly differ from zero the fewer spectrograms to compute.
The phrase multiple windows were originally introduced by
Thomson [5] for the case of stationary processes with smooth
spectra. For varying spectra however, e.g., spectra with peak
and notches, the performance of the Thomson multiple win-
dow method degrades due to cross-correlation between spec-
tra, [6]. Other methods have been invented, [7, 8] and multi-
ple windows are also introduced for the case of time-variable
processes, [9, 10].

We have studied optimal TF kernels for a class of cer-
tain locally stationary processes (LSP), where the covari-
ance function is determined by two one-dimensional Gaus-
sian functions. In [11] a formula was derived, valid for LSPs,
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for the optimal kernel in the ambiguity domain. In this pa-
per, we present the corresponding eigenvectors and eigenval-
ues connected to this kernel and study the performance of the
multiple window spectrogram estimate.

2. OPTIMAL ESTIMATION OF WIGNER-VILLE
SPECTRA

The Wigner-Ville spectrum (WVS) of X (¢), [1], is defined by
We(t, ) = / i 4+7/2, —T/2)e 9% dr.

It exists due to the assumption of harmonizability and can be
estimated from process realizations using Cohen’s class of
time-frequency representations,

Wi(t, @) =W x®(t,0) =

1
= E//W(t—t’,w—w’)fb(t’,w’)dt’dw’, (1)
where W, (z,) is the estimate of the WVS, W(r,®) is the
signal’s Wigner-Ville distribution (WVD) and ®(¢,®) is a
time-frequency estimation kernel. Sayeed and Jones [2] de-

rived the optimal kernel in the mean square error sense, i.c.
minimizing the integrated expected squared error

1@ = [ [EWit.0) - Wit 0)Pdido. @

In the ambiguity domain the Fourier transform converts the
convolution (1) into a multiplication

AX(H,T) =A(6,7)-9¢(0,7),

where the expected ambiguity function of the process is de-
fined by

AL(0,7) = /rx(l+ /2.t —1/2)e " dr.
Its Fourier transform is actually W,
1 i(0t—Tw)
Wi(t, @) = %//AX(G,T)e d6dt —
=F [ 'F2{A},

where F 1 > denotes Fourier transform in the first and second
variable. It is denoted by capital letters and defined by

F(o):=(F f)(o):= / F(D)e @ dr.
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Figure 1: Four different realizations of the Gaussian locally
stationary process for different values of c.

The optimal kernel was deduced to be,
A6 )P
E[|A(8,7)?]"

in the ambiguity domain, [11]. The time-frequency kernel
is computed from the ambiguity domain kernel by a Fourier
transformation

1 )
@ (1, @) = o / / Oopt (8,7)e O™ d0dr.  (4)

(Popt (9, T) 3)

3. OPTIMAL KERNEL OF LOCALLY STATIONARY
PROCESSES

A locally stationary process (LSP) [12] has, per definition, a
covariance function determined by two functions ¢, r and has
the form .

s
rx(t,s):q(T)‘r(t—s). ®)
It can be shown that g can be taken to be non-negative, and
r is non-negative definite (i.e. the covariance of a stationary
process) [1, 12]. The normalization r(0) = 1 is used with-
out loss of generality (any other constant can be incorporated
into m). Such processes do exist [12].

When ¢(7) = ¢~ /2 is a fix Gaussian function and r(T) =

¢~ §7/2 is a variable Gaussian function, ry(t,s) is a covari-
ance if and only if ¢ > 1, [11]. The limit case ¢ = 1 results
in a deterministic Gaussian function with stochastic ampli-
tude. Examples of the processes is depicted in Figure 1 for
different values of c.

The expected ambiguity function of a locally stationary
process is separable (rank one),

Ax(e’r) = Q(G)r(f).

Restricting to circularly symmetric Gaussian distributed pro-
cesses, the denominator of (3) reduces to

E[|A(6,7)"] = |A«(6,7)]" + (£ | 'F 2{|A:[*}) (8, 7).
For the case of LSPs this gives E[|A(0,7)[*] =
=10(0)-Ir(0) >+ (= [r*)(8)-(F ~'QI*)().

Figure 2: The TF kernel for ¢ = 30.

The optimal kernel (3) is thus @ (6, 7) =

10(6)PIr(7)?
10(0)P[r()P+(F [r?)(0)(F ~T[QP)(7)

= : (©6)

1 —1 .
1+(‘71/28(17?)92+CT12

With use of (4) the kernel in the TF domain is determined.
An example of @, (7, @) is depicted in Figure 2. For smaller
values of ¢ the TF kernel becomes more narrow with a larger
amplitude. The limit case ¢ = 1 results in ¢, (0,7) = % &
Dy (1, 0) = 38(t,0).

4. MULTIPLE WINDOW TIME-FREQUENCY
ANALYSIS

The optimal multiple windows for a time-variable process
are obtained as the eigenvectors of a rotated time-lag estima-
tion kernel, [3, 4]. The time-lag estimation kernel is calcu-
lated as the inverse Fourier transform of (6) in the first vari-
able,

R()[)t (t7 T) = F ]*I(P()[)t(e? T)'

For implementation and calculation of the multiple windows,
the optimal kernel is sampled,
2n(ky —K—1 Lh—L—1
b L, 2 )
2K M

for ky =1...2K and [, = 1...2L and M is a scaling vari-
able to sample a proper area of the kernel. Using the inverse
discrete Fourier transform in the first variable gives the dis-
crete time-lag estimation kernel Rffp,(ll ,b), 1y =1...2L and
I» =1...2L. The rotation is made via the transformation,
Rrotgp, (n1,m)

¢(C)ipt (k1 l2) = (Popr(

:Rzpt(|(n1_l);(n2_l)| |(n1—1)g(n2—1)|

+1)

(N
when both n; and n; are odd or when they both are even.
When n; is odd and n, is even or the opposite case we ap-
proximate the covariance function as,
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Figure 3: The rotated time-lag estimation kernel for different
values of c.
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—Rrot,‘)ip,(nl +1,m)

1
Rrot()p,( —1,m)+ 2

Rrot(‘,ip, (n1,m2) = y)

1 1
+4Rr0t0pt(n1,n2 —1)+ —Rrotfp,(nl ,na+1)

4
except at the edges of the matrix where just three values can
be averaged. In figure 3 Rrot()p, (n1,n2) is depicted for differ-
ent values of c.

Computing the eigenvectors and eigenvalues of the time-
lag estimation kernel and calculating the sum of eigenvalue-
weighted WVD of the different windows will give the opti-
mal discrete TF-kernel, <I>g (l1,k2), [3, 4]. If we use each
eigenvector as a sliding w1nd0w and compute the spectro-
grams of data, these spectrograms weighted with the eigen-
values and summed will give an mean squared error optimal
estimate of the WVS of the sequence.

In figure 4 the four first eigenvectors (upper figures) and
the largest eigenvalues (lower figures) for two different val-
ues of ¢ are shown. In the sampling process the parameters
are L =64, K =256 and M = 10. The eigenvectors which are
of length 2L = 128 are very similar to hermite functions. The
eigenvalues for ¢ = 1.5 are alternating between positive and
negative values where for ¢ = 30 the largest eigenvalues are
positive. The number of eigenvalues that differ significantly
from zero is the number of spectrograms that must be calcu-
lated and averaged. In figure 5, the six first eigenvalues are
depicted as functions of the parameter c. For small values of
c there are several eigenvalues that differ significantly from
zero. For larger c, a few eigenvalues, typically 3 or 4 differ
significantly from zero.

S. CALCULATION OF MEAN SQUARED ERROR

The bias and variance of a process can be computed if the
covariance matrix is known. We calculate the time-variable
covariance matrix of the locally stationary process as,

n—2L—1 n,—2L—1
Ri(mom) = g )
n—2L—1 n—2L—1

— 8
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Figure 4: Examples of eigenvectors (upper figures) and
eigenvalues (lower figures) for two different values of c.
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Figure 5: The six first eigenvalues as a function of c.

where ny = 1...4L and ny = 1...4L. Bias of the estimated

WYVS is then defined as
Bias Wy (l1,k2) = E[Wy(I1,k2)] — Wi(l1,ka),

where W,(I1,k>) is the WVS of the process. The expected
value of the estimate of the WVS is calculated to be

1
EWi(I1,k2)] = Y Aih] @7 (k)R ® (k2 )by,
i=1

where the values of the matrix Rﬁ-l is the 2L x 2L sub-
matrix from the diagonal of (8), RY = R(Lh+L:L+
2L— 1,4 +L:1;+2L—1) for [y = 1...2L. The win-
dows h; are the eigenvectors and A; are the eigenvalues of
the rotated optimal time-lag estimation kernel and ®(k;) =

o~k . k
diag|[1, e 2ok e ,e’fz”(ZK’l)Zi?] is the Fourier transform
matrix. The variance of the WVS estimate is given by all
combinations of the different subspectra covariances,

~

I
Variance W, (I1,k;) = ZZ?L,).COV (Wi(l1,k2)
j=li=1

Wj(l1,k2)),
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Figure 6: The mean squared error mse Wx(ll,kz) =
E|W,(l1,ky) — Wy(l1,k2)|?, for the optimal windows and
Thomson windows.

where
cov(Wi(l1,ka)W;(l1,k2)) = b @ (ko) RE ® (ka)h; .

The calculated variance and bias could be combined to the
mean squared error as

mse W, (I1,kz) = Variance Wy(I1, k) + (Bias Wy( ,kz))z.

The windows and weighting factors optimal for the LSP pro-
cess with ¢ = 30 are calculated and utilized to estimate the
mean squared error of the estimate of the WVS of this pro-
cess. The window length is 2L = 128 and for comparison the
mean squared error is also calculated when using the Thom-
son windows for the case where the number of windows are
I = 8 and the resolution B = 0.08. The result are shown in
Figure 6.

6. CONCLUSIONS

The covariance function of a locally stationary process is de-
termined by two Gaussian functions ¢ and r. The optimal
kernel for this process can be calculated. An optimal multiple
window estimate of the WVS with few windows can be com-
puted as the sum of weighted spectrograms. The windows
and weighting factors are calculated as the eigenvectors and
eigenvalues of the rotated optimal time-lag estimation kernel.
We study the eigenvectors and eigenvalues of this kernel and
calculate the mean squared error of the estimate of the WVS
for the optimal windows and the Thomson windows.
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