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ABSTRACT

Multiple clock cycle implementation of a flexible system for
time-frequency (TF) signal analysis is presented. It allows
TF distributions (TFDs) to take different numbers of clock
cycles and to share functional units within a TFD execution.
These abilities represent the major advantages of multicycle
design and they help reduce both hardware complexity and
cost. The designed hardware is suitable for a wide range of
applications, because it allows sharing in realization of some
frequently used TFDs: Spectrogram (SPEC), S-method
(SM) for various convolution window widths, and pseudo
Wigner distribution (WD), as well as for the realization of
the higher order TFDs.

1. INTRODUCTION

In order to alleviate the serious drawbacks of commonly
used TFDs: the SPEC and WD, the SM is defined in [7], and
intensively used in [3, 6, 8]. It is defined based on the short-
time Fourier transform (STFT). This fact makes it very at-
tractive for implementation. However, all TFDs, beyond the
STFT, are numerically quite complex and require significant
calculation time. This fact makes them unsuitable for real-
time analysis, and severely restricts their application. Hard-
ware implementations, when they are possible, can over-
come this problem and enable application of these methods
in numerous additional problems in practice. A simple im-
plementation of the architectures for VLSI design of the
systems for TF analysis and time-varying filtering based on
the SM is represented in [10, 11]. They give desired TFD in
one clock cycle. This means that no architecture resource
can be used more than once, and that any element needed
more than once must be duplicated. Besides, the single TFD
- SM with exactly defined convolution window width - can
be realized by these architectures.

In this paper we develop a multiple clock cycle imple-
mentation of a flexible system for TF analysis, based on the
SM, and suitable for VLSI design. In this implementation,
each step in the execution will take one clock cycle. In the
first step, proposed architecture realizes the STFT. In each
higher order step, different TFD is realized: in the second
one - the SPEC, in the third one - the SM with unitary con-
volution window width, and so on. In further steps this ar-
chitecture can realize the second order L-Wigner TFD
(LWD) based on the SM realization in the preceding steps.

This implementation allows a functional unit to be used
more than once per TFDs execution, as long as it is used on
different clock cycles. This will help to significantly reduce
the amount of the required hardware, and to reduce its cost.

2. REVIEW OF THE IMPLEMENTED TFDs

S-method is defined based on the unified definition of the
STFT and the WD in the following manner [7, 9]:

Ly
SM(n,ky= > PF(nk+)F (nk-i) (1)

=L,

where F(n,k) represents the STFT of the analyzed signal f{n),
whereas Wp=2L,+1 is a width of the convolution window
P(i) and the signal's duration is N=2". For the marginal cases
of the P(i) width: a) L,=N/2, the WD is obtained, b) L,=0,
the SPEC follows. By an appropriate selection of the P(i)
width, the SM produces better results than the SPEC and the
WD, regarding some the most essential aspects, [7, 9]. In
order to involve only real multiplications in (1), we modify it
by using F(n,k)=Fge(n,k)+jFim(n,k) (Fre(n,k) and Fiy(n,k) are
the real and imaginary part of F(n,k), respectively), as:

L,
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i=1
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where SM(n,k)=SMg(n,k)+SM(n,k). The k-th channel, one of
N channels (obtained for £=0,1,...,N-1), is described by (2)-
(3). Note that it will consist of two identical sub-channels
used for processing of Fre(n,k), and F,(n,k), respectively.
Higher order TFDs are used to improve concentration of
the highly nonlinear FM signals. One of them, the LWD of
the L-th order, can be defined in a recursive manner as, [8]:

L,
LWy(nky= "3 LW a(nk+i) LWy 5(nk—i) (4)
i=—1,

where LW\ (n,k)=SM(n,k). Since (4) is of the same form as
(1), the LWD can be realized by using the same hardware.

1633



Total number of SCI MCI
Adders 2L, +1 3
Multipliers 2(Lg +1) 2
Shift Left Reg. 4L, 2

Table 1: Total number of functional units per channel in an
SM block, in the cases of single-cycle implementation (SCI)
and the multicycle implementation (MCI).

3. MULTICYCLE IMPLEMENTATION

The hardware necessary for one channel multicycle imple-
mentation of the SM is presented in Fig.1. It is designed
based on the two-block structure. The first block is used for
the STFT implementation, whereas the second block is used
to modify the outputs of the STFT block in order to obtain
the improved TFD concentration based on the SM (or based
on LWD). The STFT block is implemented based on the
recursive algorithm, [1, 4, 5, 11], since, due to the reduced
hardware complexity, it is more suitable for VLSI implemen-
tation. The SM block is designed so that it realizes each
summation term from the egs.(2)-(4) in the corresponding
step of the TFD implementation.

Our goal in breaking the TFDs execution into clock cy-
cles should be to balance the amount of work done in each
cycle, so that we minimize the clock cycle time. We will
break the execution into several steps, each taking one clock
cycle. In the first step, the STFT will be executed, in the sec-
ond step the SPEC will be executed based on the first step
execution, in the third step the SM with the unitary convolu-
tion window width will be executed based on the execution
in first two steps, and so on. With each larger step one real-
izes the SM with the incremental value of convolution win-
dow, based on preceding steps. This improves the TFD con-
centration, aiming to achieve the one obtained by the WD.
Note that in the first step only the STFT block of the pro-
posed two-block architecture is used, whereas in the other
steps only the SM block is used. This will be regulated by the
set of control signals introduced on temporary registers, and
multiplexers and a demultiplexer.

Each sub-channel of the SM block contains exactly one
adder, one multiplier, and one shift left register for imple-
mentation of egs.(2)-(3). Because we need to use these func-
tional units with different inputs in later steps, we must save
the computed values, based on eqs.(2)-(3), into a temporary
registers named Real and Imag, respectively. In addition, the
SM block is used for other purposes in steps in which the
higher order TFD is realized. Than we must save the com-
puted SM into a new temporary register named SMStore. In
order to share functional units from the SM block, as well as
the very SM block, for different inputs in different clock cy-
cles, we need to add multiplexers and/or a demultiplexer at
their inputs. The introduced (de)multiplexers are:

e A two-input multiplexer at the input of the SM block
with the control line SMorLWD. It enables sharing of the
SM block for the LWD realization;

e Two N/2-input multiplexers at multiplier's inputs to se-
lect between the N/2=2"" sources of STFT values -

from different channels of proposed architecture. They
are controlled by (m-1)-bit control signal SelSTFT;

e One two-output demultiplexer in front of the Shift Left
register and one two-input multiplexer behind it, enable
use of the Shift Left register in corresponding steps
(third, fourth, and so on, when we need to implement
multiplication by 2). Control signal SHLorNo enables or
disables (in the second - SPEC completion step) this;

e A two-input multiplexer for sharing the second adder in-
put in each sub-channel. Since one adder per sub-
channel is used for implementing sums in egs.(2)-(3), its
second input can be either the constant 0 (in second step)
or a register Real (or Imag) value, depending on the con-
trol signal AddSelB;

e A two-input multiplexer at the second input of the out-
put adder in the SM block, which is controlled by the
SMorLWD signal. Namely, when the SM block realizes
the higher order TFD, it processes SM(n,k), and only
half of this block is used, since the SM is always real,
[71-[9].

Besides the multiplexers and demultiplexer controls, we
will need to add four 1-bit signals for controlling writes in
the registers R1 to R64, and in temporary registers:

e SignLoad enables sampling of the analyzed analog sig-
nal f{f) and loading these samples in registers R1 to R64,
but only after execution of the desired TFD of the ana-
lyzed signal samples from the preceding time instant;

o RealWrite and ImagWrite should be asserted only when
a registers Real and Imag are to be written by the adder's
output;

e SMWrite should be asserted when the SM with corre-
sponding convolution window width is computed.

By introducing the temporary registers and several multi-
plexers at the inputs of the functional units, we achieve the
required reduction of the amount of hardware compared to a
single-cycle architecture, [10, 11] and Table I. The achieved
hardware reduction is significant, and it increases with the
convolution window width increase. Since temporary regis-
ters and introduced multiplexers are fairly small, this could
yield a substantial reduction in the hardware cost.

The throughput of the system is N. The longest path in
the STFT block is one that connects the register storing
Fre(n-1,k) (or Fin(n-1,k)), through one multiplier and 2 ad-
ders, with the output of the STFT block. It is the longest path
in the SM block, as well. This path determines the fastest
sampling rate and the clock cycle time. This design can be
implemented as an ASIC chip to meet the speed and per-
formance demands of very fast real-time applications.

Defining the Control. From the defined multi-step se-
quence of the multicycle TFDs execution we can determine
what the Control logic must do at each clock cycle. It can set
all control signals, based solely on the distribution code
(TFDcode). Control for the multicycle architecture must
specify both the signals to be set in any step and the next step
in the sequence. Here, we use finite state Moore machine to
specify the multicycle control, Fig.2. The implementation of
a finite state machine usually assumes that all outputs, that
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Figure 1: Architecture for the multicycle implementation of the signal independent S-method together with the necessary con-
trol lines. Thick solid line highlights the control line as opposed to a line that carries data.

are not explicitly asserted, are deasserted. Finite state Control
essentially corresponds to the steps of desired TFD execu-
tion; each state in the finite state machine will take one clock
cycle. In the first L,+2 clock cycles, system realizes SM(n,k).
At the same time, the control signal SMorLWD takes zero
value. The calculated SM value is saved in the SMStore reg-
ister, by asserting SMWrite control signal. Saved SM value
will be used in the next L,+1 clock cycles, when the LWD
with L=2 will be realized. In these clock cycles the control
signal SMorLWD is asserted, in order to enable the SM(n,k)
processing in the SM block. Note that if we repeat the last
L,+1 steps from Fig.2 (i.e., steps L;+2 to 2L,+2), together
with asserting of the SMWrite control signal in the (2L,+2)-
th step, the LWD with L=4 is implemented, as well.

4. CONCLUSION

The system for multiple clock cycle implementation of the
TF algorithms is presented. Proposed hardware is very flexi-
ble since it can produce some commonly used methods, each

of them in different clock cycle. In higher clock cycles it may
produce the higher order TFDs, as well. The proposed im-
plementation allows a functional unit to be used more than
once per TFDs execution, as long as it is used on different
clock cycles, and, consequently, enables a significant reduc-
tion of hardware complexity.
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