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ABSTRACT
Several methods have been developed for estimating the pa-
rameters of damped and undamped exponentials in noise, but
the performances of such techniques are generally known
only in the undamped case. In this paper, we consider two
estimation methods: the Kumaresan–Tufts method and the
Matrix Pencil approach, and we obtain their estimation per-
formances in the case of a single exponentially damped si-
nusoid. Assuming a high signal-to-noise ratio, closed form
expressions for the bias and the variance of the damping fac-
tor are derived. The analytical results are confirmed using
Monte Carlo simulations. The analysis indicates that the Ma-
trix Pencil method exhibits a lower variance but has a greater
bias than the Kumaresan–Tufts approach.

1. INTRODUCTION

There are several methods for the estimation of the param-
eters of damped or undamped exponential signals in noise.
In the context of damped complex exponentials, the most
popular parametric estimation method is the well-known Ku-
maresan and Tufts (KT) approach [1]. It performs a reduced
rank pseudoinverse of the data matrix to get backward lin-
ear prediction parameters, from which the signal modes may
be obtained. Another estimation method is the Matrix Pencil
(MP) method which is based on a matrix prediction equa-
tion [2]. The performances of these methods and others are
well-known in the case of undamped sinusoids [2, 3], but
for damped exponentials only few works are available [4, 5],
and what is more the bias is assumed to be zero. Of course,
this assumption is valid for the frequency estimate at a high
signal–to–noise ratio (SNR) but, as will be shown later, it
does not hold for the damping factor.

In this paper, we extend these previous works to take into
account the bias in the damping factor, assuming a high SNR.
It is obtained by considering the first order perturbation in the
highest singular value of the data matrix. We show that the
frequency estimate obtained by both KT and MP methods
are unbiased and that the damping factor is biased. We also
derive the expressions of the mean and the variance of the
damping factor for both methods.

The paper is organized as follows. In section 2, a brief
recall about the two estimation methods considered here (i.e.
KT and MP) is presented. Section 3 is devoted to the perfor-
mance analysis of both methods using Wilkinson’s approach
[6]. In particular, the expressions for the first and second
order moments will be given. In section 4, a simulation ex-
ample is then presented in order to compare the theoretical
results with the experimental ones. Finally, the conclusions
are given in section 5.

2. BACKGROUND OF THE ESTIMATION
METHODS

Consider the following complex signal composed of one
damped exponential in an additive Gaussian white noise:

x̃(n) = x(n)+ e(n) = hzn + e(n), n = 0, ...,N −1 (1)

where z = exp(α + jω) is the damped mode (α < 0) with
complex amplitude h. The noise e(n) is zero mean with vari-
ance σ2

e . Throughout this paper, the tilde symbol (·̃··) indi-
cates a noisy variable. The methods described below esti-
mate the signal mode z using linear prediction and singular
value decomposition (SVD).

2.1 The KT method

The KT method is a backward linear prediction technique. It
consists first in forming the following equation system using
the available data:

X̃1b̃ = −x̃0

where

X̃1 =







x̃(1) · · · x̃(p)
x̃(2) · · · x̃(p+1)

...
...

x̃(N − p) · · · x̃(N −1)







,

b̃ = [b̃1, ..., b̃p]
T ,

x̃0 = [x̃(0), ..., x̃(N − p−1)]T .

and p is the prediction order. The backward prediction coef-
ficients are obtained by performing a reduced rank pseudo–
inverse of the data matrix:

b̃ = −X̃†
1 x̃0 = − 1

σ̃1
ṽ1ũH

1 x̃0 (2)

where σ̃1 is the principal singular value of the data matrix X̃1,
and ũ1 and ṽ1 are the principal left and right singular vectors,
respectively. Once the prediction coefficients are obtained,
the roots of the polynomial:

B̃(z) = 1+
p

∑
i=1

b̃iz
−i =

p−1

∏
i=0

(1− z̃iz
−1)

are computed and the one which lies outside the unit circle,
denoted by z̃0, is selected. It corresponds to the inverse of the
signal mode:

z̃0 = 1/z̃ (3)
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2.2 The MP method

In the case of the MP method [2], we form two matrices X̃0
and X̃1. The matrix X̃1 is the same as in the KT method, and
X̃0 is obtained in the same manner, i.e.

X̃0 =







x̃(0) · · · x̃(p−1)
x̃(1) · · · x̃(p)

...
...

x̃(N − p−1) · · · x̃(N −2)







Then, using the reduced rank pseudo–inverse of the matrix
X̃1, the matrix Z̃ is computed as follows:

Z̃ = X̃†
1 X̃0 =

1
σ̃1

ṽ1ũH
1 X̃0 (4)

The eigenvalue z̃0 of the matrix Z̃ lying outside the unit circle
(i.e. |z̃0| > 1) is selected. As for the KT method, it is related
to the signal mode by relation (3).

3. STATISTICAL ANALYSIS

In the noiseless case, it can be easily shown (e.g. [5]) that:

v1 =
z∗

|z|
√

kv







1
z∗
...

z∗p−1







, u1 =
h

|h|
√

ku







1
z
...

zN−p−1







where

kv =
p−1

∑
i=0

exp(2αi), ku =
N−p−1

∑
i=0

exp(2αi)

In addition, the nonzero singular value and the prediction
vector are:

σ1 = |h||z|
√

kvku, b =
−1

|z|
√

kv
v1

In the forthcoming analysis, we first consider the first or-
der perturbation in the “dominant” singular value σ1 and we
give its mean and variance. Then, we describe the statistical
analysis of the mode estimates obtained by the KT and MP
methods. Throughout this paper, z0 , 1/z = exp(−α − jω).

3.1 Perturbation in the signal singular value

The signal-related singular value is the square root of the
unique nonzero eigenvalue of the matrix XH

1 X1 (or X1XH
1 ).

In the noisy case, we have:

X̃H
1 X̃1 = XH

1 X1 +(EH
1 E1 +EH

1 X1 +XH
1 E1)

︸ ︷︷ ︸

error term

where E1 is a Hankel matrix of noise entries: X̃1 = X1 +E1. It
is known from perturbation theory that the first order pertur-
bation (as σ2

e → 0) in the eigenvalue σ2
1 of the matrix XH

1 X1,
associated to the eigenvector v1, is given by ∆σ2

1 = σ̃2
1 −σ2

1 ,
where [6]:

∆σ2
1 = vH

1 (EH
1 E1 +EH

1 X1 +XH
1 E1)v1

From this equation, it is clear that the mean of ∆σ2
1 is

E
{

∆σ2
1

}
= (N − p)σ2

e

For the remaining of the analysis, we need also the variance
of ∆σ2

1 . Its calculation is not especially difficult, but it is
extremely long and it is not possible to reproduce it here. We
found it to be [7]

var{∆σ2
1 } = 2|h|2σ2

e s2 +σ4
e

[

− (N − p)+

2
m−1

∑
i=0

(N − p− i)|z|2i
(1−|z|2(p−i)

1−|z|2p

)2
]

where

s2 =
m−1

∑
i=0

i2|z|2i +m2
N−m

∑
i=m

|z|2i +
N−1

∑
i=N−m+1

(N − i)2|z|2i

and m = min(p,N − p).

3.2 Analysis of the KT method

At high SNR, the matrix X̃1 is approximately rank one, so we
have:

X̃†
1 ' X̃H

1

σ̃2
1

(5)

According to equation (2), one can conclude that:

b̃ '− 1
σ̃2

1
X̃H

1 x̃0

As X̃1 = X1 + E1, x̃0 = x0 + e0 and 1/σ̃2
1 ' (1− ∆σ2

1
σ2

1
)/σ2

1 ,

the first order perturbation in the prediction coefficients is
∆b = b̃−b, where

∆b = − 1
σ2

1
(XH

1 e0 +EHx0 +b∆σ2
1 ) (6)

It is easy to observe that the vector of prediction coefficients
is biased since

E{∆b} = −E
{

∆σ2
1

}

σ2
1

b =
(N − p)σ2

e

σ2
1 |z|

√
kv

v1 (7)

We have also derived the expression of the covariance matrix
of ∆b using equation (6). Because of the lack of space, we
cannot give this expression here.

The error ∆b in the prediction coefficients results in a
deviation of the true root z0 = 1/z of the polynomial B(z)
to a new position z̃0 = z0 +∆z0 where [8]:

∆z0 = −
p

∑
k=1

zp−k
0

∏p−1
i=1 (z0 − zi)

∆bk (8)

where {zi}p−1
i=1 are the “extraneous” roots of the polynomial

B(z) (i.e. roots other than z0). It is known that these roots are
distributed over a circle at well defined frequencies. We have
found that:

zi = µ |z|exp( jωi)
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where

µ =
1

p−1
√

kv
, ωi = −ω − 2πi

p

Let

g0 = [zp−1
0 zp−1

0 , ..., 1]H =
|z|
√

kv

z∗p v1

β0 =
p−1

∏
i=1

(z0 − zi) =
1

zp−1

1− (µ |z|2)p

1−µ |z|2

then equation (8) may be written as

∆z0 = − 1
β0

gH
0 ∆b (9)

Now, using Eqs. (9) and (7), we get after simplification:

E{∆z0} = − 1−µ |z|2
1− (µ |z|2)p

(N − p)σ2
e

σ2
1

z0

This equation shows that the frequency estimate is not biased
since argE{z̃0} = argz0 = −ω . But the damping factor is
biased. The expression of the bias is:

E{∆α} ' 1−µ |z|2
1− (µ |z|2)p

(N − p)σ2
e

σ2
1

,

where ∆α ' −∆z0/z0 (obtained using a Taylor approxima-
tion). The variance of the damping factor is obtained by not-
ing that E

{
(∆α)2

}
' 1

2 |z|2E
{
|∆z0|2

}
, and

E
{
|∆z0|2

}
= kv

(
1−µ |z|2

1− (µ |z|2)p

)2

vH
1 E

{
∆b∆bH}

v1 (10)

By replacing the expression of the covariance matrix of ∆b
in equation (10), we finally obtain [7]:

E
{
(∆α)2} =

1
2σ4

1

(
1−µ |z|2

1− (µ |z|2)p

)2
[

(N − p)2σ4
e +

var{∆σ2
1 }+σ2

1 σ2
e |z|2kv + |h|2σ2

e s2 −2|h|2σ2
e |z|2kvr1

]

where

r1 =
m−1

∑
i=0

i|z|2i +m
N−p−1

∑
i=m

|z|2i

3.3 Analysis of the MP method

Using the same approximation of the inverse of X̃1 in equa-
tion (5), and from equation (4), we obtain

∆Z = Z̃ −Z ' 1
σ2

1
(−Z∆σ2

1 +XH
1 E0 +EH

1 X0)

Using Wilkinson’s approach [6], the first order perturbation
in the eigenvalue z0 of the matrix Z is given by:

∆z0 =
1

σ2
1

vH
1 (−Z∆σ2

1 +XH
1 E0 +EH

1 X0)v1 (11)

So, in backward prediction, the mean deviation of the MP
estimate from the mode z0 is

E{∆z0} = − (N − p)σ2
e

σ2
1

z0

Since argE{z0 +∆z0}= argz0 =−ω , the frequency estimate
is not biased. Regarding the damping factor, it is biased
since:

E{∆α} ' (N − p)σ2
e

σ2
1

The variance of the error ∆z0 is obtained using equation
(11), from which we derive the following expression for the
second order moment of ∆α [7]:

E
{
(∆α)2} =

1
2σ4

1

[

(N − p)2σ4
e +var{∆σ2

1 }−

|h|2σ2
e (1−|z|2)s2 −2|h|2|z|2σ2

e s′2

]

where

s′2 = s2 +
m−1

∑
i=0

i|z|2i −
N−1

∑
i=N−m

(N − i)|z|2i

4. SIMULATION EXAMPLE

We consider a signal containing one damped exponential
with parameters N = 30, α = −0.1, ω = 2π0.1 and SNR =
40 dB. The peak SNR is defined as:

SNR = 10log(|h|2/σ2
e )

The theoretical bias and variance determined in this pa-
per are compared to those calculated from 2000 numerical
simulations. The results obtained with the KT and MP meth-
ods are shown in figures 1 and 2 respectively, for a predic-
tion order varying between 1 and N − 1. First, we can con-
clude that the variance of the damping factor estimated with
both KT and MP methods are minimized for a prediction or-
der p = N/3 or p = 2N/3. This corresponds to the well–
known optimal parametrization of these methods in terms of
the minimization of the variance of the frequency error.

Moreover, we observe that the KT method exhibits a
lower bias as compared to the MP method, but the latter
presents a much lower variance. In the case of damped ex-
ponentials, the bias of the damping factor is a very important
measure of performance because it informs about the z–plan
localization of the estimated mode. Indeed, if the bias is too
high, then the mode may be estimated inside the unit circle
even in a backward prediction. In this case, if the unit cir-
cle criterion is used to select the signal–related modes, some
modes will be missed.

Figures 3 and 4 show the bias and the mean square er-
ror versus the SNR, for the KT and MP methods. Here the
prediction order is set to p = 10 and the other parameters are
the same as before. These figures show that the theoretical
variance is valid beyond a threshold SNR, which is here ap-
proximately 10 dB. We also observe that the theoretical bias
is valid from 0 dB. The KT method gives a better z–plan lo-
calization of the damped mode since it is estimated outside
the unit circle for SNR > 5 dB while the MP method works
for SNR > 10 dB.
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Figure 1: Theoretical and estimated bias of the damping fac-
tor for KT (—) and MP (———) methods.

0 5 10 15 20 25 30
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5
x 10

−3

Theoretical std. dev.
Estimated std. dev.
Cramer−Rao Bound

prediction order

√

va
r{

α
}

CRB

Figure 2: Theoretical and estimated variance of the damping
factor for KT (—) and MP (———) methods.

5. CONCLUSION

We have presented a statistical analysis of two estimation
methods: the Kumeresan-Tufts (KT) method and the Matrix
Pencil (MP) approach. Our development is focused on the
bias and variance of the damping factor. In particular, we
have shown that the bias is generally not negligible. The pre-
sented analysis confirms the superiority of the MP method
over the KT method in terms of variance at high SNR. How-
ever, the bias of the damping factor is better with the KT
method. This feature is of great importance when it is nec-
essary to apply the unit circle criterion, especially for multi–
component signals.
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