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ABSTRACT

This paper presents a new multistage comb-rotated
sinc (RS) decimator. The proposed structure consists
of different cascaded comb sections, each down-
sampled by a specific down-sampling factor. The
number of sections depends on the decimation factor
of the original comb decimator. The first section is
realized in a non-recursive form. Using the polyphase
decomposition, the sub-filters of the first section can
be operated at lower rate which depends on the down-
sampling factor of the first section. Additionally, the
rotated sinc (RS) filter is cascaded in the second
section, thus permitting both multipliers of the RS
filter to work at the lower rate. The magnitude
response of the proposed structure is better than that of
the original comb decimator.

1. INTRODUCTION

In many communication and signal processing
systems, it is necessary to isolate a very narrowband
signal from a very wideband signal, referred to as sub-
band tuning [1]. The decimation filter is the key
component required to provide an efficient all-digital
sub-band tuner systems [1].

A commonly used decimation filter is the cascaded
integrator comb (CIC) filter [2], consisting of an
integrator section (first stage) and a differentiator
section (second stage) separated by a down-sampler
with a down-sampling factor M. Each of the main
sections is a cascade of K identical filters as shown in
Figure 1. The transfer function of the resulting
decimation filter is given by
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Figure 1: CIC decimation filter

The above decimation filter is attractive in many
applications because of its very low complexity. It
should be noted that while the differentiator section
operates at the lower data rate, the integrator section
works at the higher input data rate resulting in a larger
chip area and a higher power consumption especially
when the decimation factor and the filter order are high
[3]. The use of a non-recursive equivalent to Eq. (1)
reduces power consumption and increases the circuit
speed [3-5]. More details on a comparison of the
performances of the recursive and non-recursive
implementation are given in [3]. In this paper we
propose a new multistage structure in which the first
stage is implemented non-recursively while all other
stages are implemented recursively. The magnitude
response of this structure is improved over that of the
original comb filter by using a modified rotated sinc
(RS) filter introduced in [6]. Unlike the structure
advanced in [6], where one multiplier works at the high
input rate, in the structure proposed in this paper, both
multipliers work at the lower rate.

The paper is organized as follows. In Section 2
we first define the modified multistage comb filter, and
in Section 3 we propose modified RS filter. An efficient
multistage decimation structure is described in Section
4.

2. THE MULTISTAGE COMB FILTER

Considering the case when the down-sampling
factor can be expressed as
M =MMM5..My 2)
we can rewrite Eq. (1) as
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For example, for M =32 and N = 3, we can select
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(5)
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Using Egs. (3) and (4) we express the modified comb
filter H,,(z) as,

Hy(2)= Hy (HS (2)-- HEV (2). (7)
For
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the corresponding magnitude response is
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where L;,i=1,...,4, are integers. For M = 32 from Eq.
(1) using Eq. (9) we arrive at
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We get from Eq. (7) using Eq. (5)
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(1)
Figure 2 shows the magnitude responses given in Egs.
(10) and (11) for different values of K, K, and K,. It
should be noted that by using different values for the
number of factors K; in each stage, the magnitude
characteristic of the new filter can be improved over
that of the original comb decimator. We exploit this
fact in the structure proposed in the next two sections.

3. THE MODIFIED RS FILTER
The RS filter is proposed in [6] increases the stopband
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Figure 2: Gain responses of the comb
and the modified comb filter.

attenuation of the comb filter without increasing too
much the computational complexity. By applying a
clockwise rotation of a radians to any zero of Eq. (1),
we obtain the following transfer function [6]
-M _ joM
1 1-z7"¢/
H u (2)=—

_ 12
M -zl (12

An equivalent expression is obtained by applying the
opposite rotation

1 [1-zMem/oM

Hy()=—|—————| (13)
M\ 1-z7/*

These two filters have complex coefficients, but they

can be cascaded, thus obtaining a filter H,.(z) with real

coefficients

H,(2)= H,(2)Hy(2)

_ -M | _2M
_ 12 1-2cos(aM)z : +z2 4
M 1-2cos(a)z +z~

The cascade of three filters given in Egs. (1) and (14) is
referred in [6] as the RS filter Hg(z):

Hp(2)= H(Z)H,(2). (15)
The magnitude response of this filter is as follows
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We modify Eq. (14) as indicated in Eq. (17):

H,.,(2) = Hyy (2)H g1y (2)
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where M| is a factor of M as indicated in Eq. (2). As a
result, H,,,(z) can be moved to the lower rate which
is M times smaller than the high input rate.

The corresponding modified RS filter is obtained
as the cascade of the modified comb filter Eq. (7) and
the modified rotated filter Eq. (17).

H g (2) = H yy (2)H 1y (2) - (18)

The corresponding magnitude response is
1 (67 = [ e
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We illustrate the procedure for M = 32. Using Egs. (5),
(11), and (19), we have
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The plots Hi(®w) and Hg,(®) for o = 0.0184 and
K=K, =K,=1, Ky=2 are shown in Figure 3(a),
whereas the corresponding plots for K =1, K; =K,
=2, Ky =4 are shown in Figure 3(b). It should be

noted that any desired stopband attenuation can be
attained by choosing appropriate values of K; and o in

Eq. (20).
4. EFFICIENT REALIZATIONS

Using Eq. (7) and the cascade equivalence [7] we
construct the multistage structure of the modified comb
filter as shown in Figure 4(a). The structure is
composed of cascaded comb filters separated by their
corresponding down-samplers. As shown in [4], the
maximum decimation factor in the first stage can con-
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Figure 3: Gain responses of the RS and modified RS filters.

siderably improve the power consumption area. We use
an approach similar to that given in [4]. The cascade
of Ky_y comb filters of length Mjhas a transfer

function given by

© 1 Ky-1 '
HyMN T (2)= [—j Hy_1(2) (21)
M,
where
, Ky (M -1) ~
Hy ()= Y hm:z". (2
n=0

The coefficients of this filter are integers and are
symmetric [4]. A polyphase decomposition of the
transfer function of Eq. (22) is given by

Hy ()= B+ .+ 27 DEy, (M

(23)
where ES(ZIMI),SZO,...,MI—L denote  the
M, polyphase components. Using the cascade

equivalence [7], the down-sampler can be placed
before filtering. As a result, the polyphase filters in the
first section are moved to a lower rate, which is M,

times lower than the input rate.
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Figure 4: Efficient realizations.

From (17) we have
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As a result, the denominator D,,, (zM‘ ) of H,,,(z) can
be moved to the second stage, i.e. after the factor-of- M
(zM ) can

be moved after the factor-of-M,  downsampler. A

downsampler. Similarly, the numerator N

rm

more efficient realization of the comb-modified RS filter
is thus as shown in Figure 4(b).

5. CONCLUDING REMARKS

This paper has presented a new efficient multistage
structure for comb-RS decimation filter. First stage is
realized in a nonrecursive form. Applying the
polyphase decomposition the polyphase filters in the
first section are moved to a lower rate, which is M

times lower than the high input rate. The magnitude
response of this structure is improved over that of the
original comb filter using a modified rotated sinc (RS)
filter. Unlike the structure proposed in [6], where one
multiplier works at the high input rate, in the structure
proposed in this paper, both multipliers work at lower
rate. Besides, as the examples included have
illustrated, we obtain an improved magnitude
characteristic compared to that of the original RS
filter [6] saving a low complexity of the comb filter.
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