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ABSTRACT 

Maximum likelihood presents a useful solution for the 
estimation of the parameters of time series models when 
data are missing. The highest autoregressive (AR) model 
order that can be computed without numerical problems is 
limited and depends on the missing fraction. Order selection 
will be necessary to obtain a good AR model. The best 
criterion to select an AR order with an accurate spectral 
estimate is slightly different from the criterion for 
contiguous data. The penalty for the selection of additional 
parameters depends on the missing fraction. The resulting 
maximum likelihood algorithm can give very accurate 
spectra, sometimes even if less than 1% of the data remains.  

1. INTRODUCTION 

A robust and simple algorithm for spectral analysis with 
missing data is a useful tool for signal processing. Practical 
observations are often incomplete because sensor failure or 
outliers cause missing data. In meteorological observations, 
the weather conditions may disturb the equidistant 
sampling scheme. A general spectral estimator for missing 
data is the method of Lomb-Scargle [1]. This method 
computes Fourier coefficients as the least squares fit of 
sines and cosines to the available observations. The Lomb-
Scargle spectrum is accurate in detecting strong spectral 
peaks in low level background noise, but the bias of the 
method prevents the description of spectral shapes or 
slopes in those parts of the spectrum with lower power [2]. 
 Many missing data methods are derived from algorithms 
that have been developed for consecutive data. Firstly, they 
reconstruct the missing data, followed by the estimation of 
the spectral density from the reconstructed consecutive 
signal. Those methods can give rather accurate results for 
small missing fractions [2]. However, reconstruction 
methods are never as accurate as an AR (autoregressive) 
model estimated with a robust maximum likelihood 
algorithm [2]. Exact maximum likelihood using Kalman 
filtering has been described for missing data [3] and also an 
approximate method using predictions in a finite interval[2].  
 The layout of the paper is as follows. Time series 
models and a robust AR estimator are introduced. The 
paper deals only with randomly missing data. Estimation of 
parameters in a white noise and an AR(1) example gives an 
idea of the variance of parameters and the behavior of the 
likelihood. For very small remaining fractions, less than 
1%, low order AR models are estimated. Some specific 
choices for the penalty factor in an order selection criterion 
are compared. 

2. AR MODELS 

Autoregressive or AR models can describe the 
characteristics of stationary stochastic processes [4]. The 
power spectral density function and the autocovariance 
function are determined completely by the parameters of the 
AR model. An AR(p) model can be written as:  
 

1 1n n p n p nx a x a x ε− −+ + + = ,                        (1) 
 

where εn is a purely random white noise process with zero 
mean and variance σε

2. Almost any stationary stochastic 
process can be described as an unique AR(∞) model, at 
least theoretically. In practice, finite orders are sufficient. 
Parameters can be estimated from given data xn to 
determine a model that could have been used to generate 
those data from white noise as input. The autocovariance 
function and the power spectral density of the data xn can be 
computed from the known or from the estimated model 
parameters. With consecutive data, the model order p can 
be selected automatically, based on reliable statistical 
criteria [5]. The power spectrum h(ω ) of the AR(p) model 
(1) is given by [4]: 

22

2 2

1 p

1 1
( )

( ) 1+j j j p
h

A e a e a eε εω ω ωω σ σ − −= =
+ +

      (2) 

 

This definition applies for true as well as for estimated 
parameters. Models are stationary if the roots of A(z), called 
poles, are inside the unit circle. Also the infinitely long 
autocorrelation function is determined by the p parameters 
of (1), rather than by the inverse Fourier transform of (2). 
The Yule-Walker relations [6] describe the complete 
autocorrelation function of an AR(p) process  
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 Reflection coefficients ki are used to recursively 
determine the AR parameters Am(z) of all model orders m 
between 1 and p, with the Levinson-Durbin formulas [6]: 
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Those relations have the property that all poles are inside 
the unit circle if the reflection coefficients are all less than 1 
in absolute value. It is this property that will be used for a 
robust algorithm for missing data. 
 The accuracy of estimated models is evaluated with the 
model error ME. This is a relative measure in the frequency 
domain based on the integrated ratio of true and estimated 
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spectra. Also a time domain expression for the model error 
ME exists as a normalized prediction error PE [5]:  
 

     
( )2/ 1 .M E N PE εσ= −         (5) 

 

The PE is defined as the expectation of the fit of an 
estimated model to consecutive new data of the same 
process. The multiplication with the number of observations 
N gives the ME an expectation that is independent of the 
sample size, for unbiased models from contiguous data. It 
yields the number of parameters p’ as the minimal 
expectation of the ME for unbiased estimated AR(p’) 
models, with p’ greater than or equal to the true process 
order p. 

3. ROBUST ESTIMATORS 

Two different maximum likelihood AR estimators can be 
used for missing data problems. Both give almost always 
the same results and both have the same problems with 
robustness and convergence. The exact estimator [3] 
requires a computation time that is proportional to the sum 
of the available and of the missing data. The approximate 
estimator’s time is proportional to the available number of 
data only [2]. The speed of the exact algorithm is higher if 
less than 75% of the data is missing; the approximate can be 
much quicker for very sparse data. To improve the 
numerical robustness, the algorithms build the estimated 
Am(z) with reflection coefficients ki, for all model orders, by 
using (4) with unconstrained optimization of tan(π /2*ki) for 
increasing orders m. This guarantees that the estimated ki is 
always in the range -1< ki <1. Hence, all AR models 
computed by non-linear numerical optimization routines are 
stationary. The usual Yule-Walker or Burg algorithms for 
AR estimation in contiguous data keep previous reflection 
coefficients constant in computing the new km [6] for 
increasing orders. For missing data, however, all ki are 
optimized afresh and simultaneously in the missing data 
algorithms, for every candidate model order m.  
 Starting values for the non-linear optimization of the 
AR(m) model are the reflection coefficients of the AR(m-1) 
model, with an additional zero for the new km, with good 
properties [2]. Having obtained several AR models, it is 
essential to develop some criterion to choose the best 
among the candidates. Order selection for models estimated 
by likelihood maximization can be performed with a 
generalized information criterion GIC(p,α), defined as: 
 

ˆ( , ) ( ; )pGIC p L X a pα α= + .        (6) 
 

In selection criteria, the negative of the likelihood, denoted 
ˆ( ; )pL X a , is computed for the parameter vector âp for 

which the minimum is found for the available data X. The 
order p with the minimum among the GIC(p,α) is selected. 
The best value for the penalty α  has to be investigated in 
the missing data case. The value α = 2 is the famous AIC 
criterion [4]. In order selection for consecutive data, penalty 
α = 3 has been proposed as preferable [5]. 

4. WHITE NOISE SIMULATIONS 
 
The possibilities, the robustness and the accuracy of the 
missing data algorithm will be studied in simulations where 
consecutive data are generated first with an AR(p) process. 
Afterwards, those data are transformed into a missing data 
problem by randomly erasing observations.  
 The missing data maximum likelihood estimation 
algorithm can also be used for contiguous data. In that case, 
the highest possible candidate AR order is limited to 20, 30 
or perhaps 40, depending on the specific data and on N. 
Numerical problems with the multidimensional optimization 
algorithms as well as the required computation time prevent 
the estimation of higher order models. The usual Burg 
algorithm can estimate models of order N-1 in contiguous 
data [5]. The limitation of the highest candidate model 
order is more inspired by the non-linear optimization that is 
required by the maximum likelihood algorithm than by the 
missing data character of the problem. Restriction of the 
highest AR order to 10 in simulations prevents numerical 
problems and gives a clear idea about the average quality of 
selected models as a function of the penalty factor α  in (6). 
The convergence of the maximum likelihood algorithms is 
best for low order AR models and for few missing data and 
it becomes a problem in some simulation runs if higher 
orders must be calculated for a large missing fraction. Then, 
the average quality of the selected models will become 
poor, but that average is not always representative for the 
quality of most of the individual simulation runs. 
 Table 1 gives results for a simulation experiment with 
white noise; γ is the remaining data fraction. Similar 
simulations with contiguous data have lead to finite sample 
criteria for AR order selection [7]. Theoretically expected 
values for contiguous data would be for the three columns: 
 

L ≈ N-m, ME ≈ m,  N*var(km )≈ 1 
 

The ≈ denotes the asymptotical approximation, which is 
almost equal to the finite sample result for m<5 if N is 1000. 
The behavior of the likelihood L is almost the same as it 
would be for contiguous data: the average of the likelihood 
diminishes with 1 for each additional order. The ME is 
quite different. The first values are approximately given by 
m/γ , which is 10m for the Table 1. However, the ME values 
become still much greater than this missing data value for m 
> 5, e.g. ME=450 for the AR(10) model. The table gives the 
variance of the reflection coefficients of the estimated 
AR(5) model. It is approximately 1/γ for all five orders. If 
the AR model order would be greater than 5, the variance of 
 
 

Table 1.  The average of 100 simulation runs of the likelihood, of 
the ME and of N times the variance of reflection coefficients, as a 
function of the model order m. N=1000 white noise observations 

are remaining, γ = 0.1 
 

m L ME N*var km 

1 997.2 9.7 9.9 
2 996.3 19.2 10.8 
3 995.3 32.9 12.1 
4 994.5 44.0 9.7 
5 993.4 66.1 12.8 
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all reflection coefficients would become greater than 1/γ  in 
the same simulations, e.g. about 2/γ for the AR(10) model. 
For higher orders, the ME and the variance of all estimated 
reflection coefficients increase sharply. This explains the 
unpredictable performance of estimated high order AR 
models. It is a good reason to restrict the highest candidate 
AR order for small values of the remaining data fraction.  
 The drop of 1 per parameter in L is the same as in 
contiguous data because that is the natural decrease of the 
likelihood L if superfluous parameters are estimated. If the 
remaining fraction is γ , if the remaining number of 
observations is N and if the data times are random, it can be 
shown that the expected number of data fragments with at 
least two contiguous measurements is γ N [2]. Likewise, the 
average number of occurrences for every fixed lag is about 
γ N. Therefore, the effective number of observations in a 
white noise experiment is about γ N. That explains the 
global behavior of the ME and the parameter variance in 
Table 1 for low orders.  
 

5. AR(1)  SIMULATIONS 
 
Table 2.  The average of L, ME  and the variance of the reflection 

coefficients for 1000 AR(1) observations with a1=-0.9, γ = 0.1.  
 

m L ME N*var km 

1 540.4 0.3 0.2 
2 539.4 7.1 22.1 
3 538.6 29.1 60.2 
4 537.3 123.1 88.9 
5 536.1 382.6 36.7 

 

In contiguous data, the white noise behavior is found in the 
likelihood, the variance of reflection coefficients and in the 
ME of all unbiased models of true order and higher. Table 2 
gives simulation results of an AR(1) process. The likelihood 
diminishes with about 1 for each order, like in white noise. 
The difference between the likelihood for order 0 and 1 is 
also about 1 in white noise, but that difference is 460 for 
Table 2, indicating that the likelihood decreases very much 
if the first parameter is estimated. The ME for the estimated 
AR(1) model is 0.3. This is much less than the ME of the 
AR(1) model estimated in white noise. It is even less than 1, 
the expected value if the AR(1) model is estimated from 
contiguous data [5]. The ME of the AR(2) and of the AR(3) 
model are also smaller than the white noise results. 
However, the ME of the AR(4) and AR(5) model are much 
greater in Table 2 than in white noise. The variance of the 
first reflection coefficient is much smaller than in white 
noise, the variance of the higher order reflection 
coefficients becomes much higher. This shows that only the 
behavior of the likelihood above the true order is 
independent of the true process characteristics above the 
true order, but the behavior of the model accuracy ME and 
the of the variance of reflection coefficients depends for all 
model orders on the true process characteristics. 
 An example showed that taking only every third 
contiguous observation will improve the model error for 
AR(1) processes with a pole close to the unit circle [2]. This 
regular pattern of missing data gives an improved model  

Table 3: The average ME and reduction of the likelihood for 
N=5000 AR(1) observations with a1=-0.8 and for N=1000 

observations with a1=-0.9, as a function of γ. L0≈N. 
 

γ N=5000  a1=-0.8 N=1000, a1=-0.9 
 ME (L0-L1)/N ME (L0-L1)/N 

0.95 0.94 0.975 1.13 1.632 
0.9 1.04 0.968 1.04 1.570 

0.75 0.89 0.884 0.90 1.470 
0.5 0.79 0.695 0.53 1.235 

0.25 0.63 0.431 0.42 0.855 
0.1 0.63 0.207 0.34 0.460 

0.05 1.05 0.111 0.51 0.258 
0.025 2.13 0.056 0.65 0.142 

0.01 4.79 0.023 0.74 0.063 
0.005 8.93 0.012 44.61 0.033 

0.0025 25.61 0.006 1427.31 0.014 
0.001 34.40 0.002 1957.90 0.005 

 

Table 4. The average ME and reduction of the likelihood for 
AR(1) observations with a1=-0.9, for γ N = 10. 

 

N γ ME L0-L1 

1000 0.01 0.74 63 
500 0.02 0.93 56 
250 0.04 0.41 54 
100 0.1 0.42 45 
50 0.2 0.68 32 
25 0.4 2.24 20 
10 1 15.45 3.5 

 

accuracy, for the case that the number of observations that 
is actually used for the estimation of the AR(1) parameter is 
the same. Table 3 shows that also randomly missing data 
give ME values smaller than 1, until very small fractions γ. 
The average reduction of the likelihood between the orders 
0 and 1 is always (much) greater than 1. However, this 
significant average likelihood reduction does not give 
satisfactory AR(1) models if γ N is much less than 10. In 
other words, as long as the expected number of data 
fragments with at least two contiguous measurements, γ N, 
is greater than 10, AR(1) models can be estimated if the 
poles are close to the unit circle. For small γ, L0-L1 is more 
or less proportional to γ or γN in Table 3, in both examples. 
 Table 4 shows once more that the decrease of the 
likelihood is almost the same for different N, as long as γ N 
remains the same and only if γ is small. The explanation is 
that that the expected number of fragments with at least two 
contiguous data is γ N and the average number of occurren-
ces for every other fixed lag is about γ N. Only neighboring 
data can contribute significantly to the decrease of the 
likelihood, and that number of close data is given by γ N. 
 

6. AR(6)  SIMULATIONS 
 

Comparing order selection criteria (6) with different 
penalties α  is not interesting for white noise: the model of 
order 0 will be the best and the criterion with the highest 
penalty will most often select that order 0. It is necessary 
that examples have both the possibility of overfit and of 
underfit, by selecting a too high or a too low order, 
respectively. To easily construct different interesting 
examples, the following procedure is used in simulations: 
the true parameters of a generating process of an arbitrary  
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Fig.1. True and estimated AR(6) spectrum from 500  observations 
with 50 % missing , β= - 0.6. The ME is 7.6 in this realization. 

Table 5. The average ME of 100 simulation runs of fixed order 
and of selected models for different penalties, as a function of the 

remaining fraction γ for N=500, β =-0.6. 
 

→  γ 0.1 0.25 0.5 0.75 0.9 0.95 
Fixed order models 

AR(1) 134.2 128.3 122.9 120.6 119.0 118.8 
AR(2) 59.5 49.6 44.6 41.1 40.1 40.2 
AR(3) 51.3 30.4 20.7 16.8 16.0 15.5 
AR(4) 126.7 29.6 13.5 9.1 8.2 8.0 
AR(5) 358.3 55.7 14.2 7.6 5.9 6.0 
AR(6) 790.0 113.6 19.7 8.4 6.1 5.8 
AR(10) 15059 1884 101.4 10.6 11.8 10.1 

Selected model orders 
α=2 857.6 221.7 28.9 12.8 8.9 8.4 
α=3 308.9 51.8 27.3 12.4 8.8 8.4 
α=4 110.2 51.2 26.9 12.7 9.3 8.9 
α=5 95.7 53.0 28.4 14.7 10.0 9.3 
α=7 111.1 64.8 35.7 17.9 11.8 11.1 
α=10 146.3 84.8 41.3 24.9 16.2 13.7 

 

order p are built from reflection coefficients with (4), with 
km=β m. In this way, all poles of the generating process have 
the same radius β. Figure 1 shows the true and the estimated 
AR(6) spectrum of a process with β = - 0.6. The accuracy 
of the spectrum is remarkable. The expected value of the 
ME for contiguous data would be 6. Randomly missing 50 
% of the data has very little influence on the spectral 
accuracy in this individual simulation run. 
 For each missing data record, AR models of orders 1 to 
10 are estimated. Order selection has not yet been success-
ful for orders greater than 12 or 15. Simulation examples 
have been found in which the model with the lowest 
GIC(p,3) was poor if models with orders higher than 10 
were candidates, and one of those orders was selected in a 
few simulation runs, destroying the average quality. 
 The best order for the estimated fixed order model 
depends on the true process parameters and on the missing 
fraction in Table 5. If the fraction of remaining data is 
lower, the optimal order tends to be lower.  
 The best value for the penalty depends on the 
compromise between underfit and overfit of the example 
processes and also on the highest candidate model order. In 
the given simulations, the penalty factor α was optimal for 
the values between 3 and 5. This has been found in many 

simulations. If overfit errors are not probable, e.g. because 
the maximum candidate order is close to the best order, a 
smaller penalty may seem appropriate. If underfit errors are 
not probable, like in the AR(1) examples of Table 3, the 
best penalty may become 10 or even higher. However, in 
examples where both the risks of underfit and of overfit are 
present, the range 3 < α < 5 gives always acceptable results, 
with a preference for a greater penalty factor α if the 
remaining fraction γ  becomes smaller.. 
 The average value of the ME in Table 5 for γ = 0.5 and 
the single example in Fig.1 are different. If more data are 
missing, the average ME becomes higher because of the 
very poor quality of a few simulation runs. In those runs, 
the minimization of the likelihood function did not 
converge properly. This will happen sometimes for small γ  
and for high candidate AR orders. For a single given 
missing data problem, it is always possible to improve the 
convergence by trying various starting values for the 
parameters. 

 
CONCLUDING REMARKS 

 

Both the exact and the approximating maximum likelihood 
algorithm can estimate accurate AR models in data with 
randomly missing observations. AR models are estimated 
for increasing model orders by using the previous model as 
starting values for the non-linear optimization, with an 
additional zero for the new order. The average accuracy is 
comparable to that of contiguous data if not more than 25 % 
of the data is missing. For higher missing fractions, the 
model quality depends on the true process. AR(1) models 
with a pole close to the unit circle can be estimated very 
accurately, even if more than  99 % of the data is missing. 
 The best value for the penalty factor in the order 
selection criterion depends on the missing fraction. The 
penalty 2 is too low, penalty 3 is a good value if less than 
25 % is missing, 5 gives good results if less than 25 % 
remains and penalty 4 is a good compromise if about 50 % 
of the data is missing. 
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