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ABSTRACT

Most studies concerning the EEG inverse problem focus on the
properties of one or another specific inverse solution. Few studies
approach the problem of the bounds imposed by the system itself,
indifferently of the inversion method used.

We are interested in the localization properties of an EEG sensor
system using a generic reconstruction procedure in the context of a
Brain Computer Interface project. We investigate various perturba-
tions: additive noise, electrode misplacement errors and external
sources contributions. The estimation of errors uses the notions of
normalized measurements and sensitivity functions in a determinis-
tic framework, but our results closely link to the stochastic Cramér-
Rao minimum bound.

We propose to modify the system, and more specifically the elec-
trodes configuration, such as to minimize the forecasted errors, thus
enhancing the robustness of the system. The configurations ob-
tained through a hybrid Simulated Annealing — Gradient Descent
approach show significant improvement when compared to normal
setups.

1. INTRODUCTION

In the framework of a Brain Computer Interface (BCI) pro-
ject, researchers are interested in properly distinguishing
between different mental activities. One way of doing it is
through identification of the main active areas of the brain
which are activated according to the current mental activi-
ties. Precise localization is thus very important.

The source reconstruction is usually performed through lin-
ear inversion after uniform discretization of the solutions
space ([1], [2]). Using the resolution kernel of such inversion
operators one can establish, for a fixed electrode system, the
spatial resolution and the accuracy in terms of amplitude ([3],
[4]). However, this has to be applied for each inversion
method and only supports linear constraints. We are inter-
ested in an analysis that should be independent of the inver-
sion method chosen, and that should identify the limits of the
reconstruction based solely on the physical properties of the
system itself (physical equations and physical layout).

In sections 2 and 3 we provide a deterministic framework for
analysing nuisances caused by any types of perturbations.
This framework is rooted in the system through its sensitivity
functions and considers an L2 metric for the quantification of
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errors. We chose the L2 norm instead of another one mainly
for computational convenience, and because it is used in the
vast majority of inversion procedures (e.g. linear inversion).
Sections 4 and 5 include stochastic models of perturbations
and show the direct link between our results and the Cramér-
Rao bound when estimating the minimum statistical vari-
ances of inversion. We use the results from these sections for
deriving optimality criteria (section 6) that should be used
when building an electrode system. Simulation results based
on the optimization method from section 7 are presented in
section 8, comparing such optimal designs with normal con-
figurations.

2. MEASUREMENT SPACE AND RESEMBLANCE
FUNCTION

We construct our analysis on an obvious but necessary state-
ment: the power to discriminate between two sources is not
related to the distance between them in the source space, but
solely to the distance in the measurements space after map-
ping. We thus need to choose a convenient measure of the
distance in the measurements space.

In the EEG setup, the amplitudes of the sources (brain activ-
ity) are unknown. Therefore the localization of a source is
completely defined by its normalized measurement, which
we call the form-factor. Considering the classical relationship
between the measurements y(r,) and sources x(r,):

V(1) = ZlhCerreyx(3)]
we define the form-factor associated to a source as:
h(re],r:
P ()= el) 1)
h(}" el Tx )
Using the L2 metric, the distance between two sources in the
measurement space is (the brackets stand for scalar product):

dist,.., = |, = F[ =2(1-(F, £,))
Thus different source configurations are indistinguishable if
the scalar product of their form-factors (1) equals 1 (they are
identical). In consequence we define the resemblance func-
tion as the scalar product between the form-factor indicated
by the measurements £, and the form-factor associated with

12

a hypothetical source F :

p(Fm’Ezs):<Erz’FhS> (2)
Considering one source, when searching in its vicinity, if the
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measurements are unperturbed, the maximum of the resem-
blance function will be reached when the hypothetical source
is the original source and it will be equal to 1. But noise will
modify the form-factor such that the resemblance function
will no longer have its maximum on the real source position,
but in a neighbouring position. This shift of the maximum of
the resemblance function is denoted in this paper as the re-
semblance bias, and it is naturally adopted as the basis for the
measure of the localization properties, in terms of bias and
variance, of a perturbed generic sensor system.

3. RESEMBLANCE BIAS

This section is focused on finding the maximum of the re-
semblance bias for a system perturbed by errors caused
through sensor misplacement, additive noise and external
sources. We are interested in properly localizing a source in a
specific region of the brain, thus all other sources are natu-
rally nuisance sources. We build our model sequentially, in-
tegrating the different perturbations step by step.

3.1 Sensor misplacement

Suppose the sensors are misplaced by Ar,, a vector of dis-

placements for each sensor. Then, in the vicinity of the origi-
nal source, the resemblance function (2) will be :

p(Ar ,Ar,

X el

): F(rx,re, +Arel),F(rX +Arx,rel)

measurement

hypothetical source
And the measurement bias is :
Ary., =argmax p(Ar,,Ar,) (3)

xbias
In order to solve this maximization, let's stick to the case of
small displacements, where the following linear approxima-
tions hold :

F;n (rx > rel + A’;l ) = F (rx > rel ) + SF Arel m”a:li(m F + F;,Arel

T

6;17 notation (4)
F (rx +Arx,r€,) = F(rx,rd)+—Arx = F+FAr,

r’C
Equation (4) introduces the sensitivity functions F, (source
position) and F), (sensor position) which ultimately define

the system’s robustness. Considering the geometry of the
EEG problem, F is of size N by 3 (3D solution space), and

F, is of size N by 2N, as the electrodes are placed on a 2D

surface, N being the number of electrodes.
Using and the normalization property of the form-factors:

1= ”F(rx,re[ +Ar, )"2 = "F”2 +2<F,F;,Arﬁ>+ F,Ar,
Thus:

2

2

F,Ar,

(FFadry) === )

Similarly

2

F.Ar,

)= ©

Substituting (4), (5) and (6) in (3):

1

1
A7y = arg max ((FxArx’FelAreI > 5 ’ 2 E,Ar,

xbias F;( Arx

2 )
Imposing the maximization condition through the derivative :
0
2) =0

1
E((ﬂ&wﬂﬁ%z)‘j

x

2

F.Ar,

1
> F,Ar,

& —FFAr +FFyAr, =0

This gives directly the measurement bias as :
Arijias = (F;c[Fv )_] F;r[F;’lArel (7)
Let’s compute the distance between the form-factor associ-
ated with a hypothetical source situated at the position de-

fined by the resemblance bias and the measurement form-
factor. Using the relationships (4) to (7), one obtains:

I, = Filf = (Fon, ) (FLFOR) F!=1)(Fian)

This distance is null if a linear relationship exists between the
displacements influence and the source position sensitivity:
F,Ar, = F A4,
A needing to be a 3 by 1 vector. Moreover, replacing in (7):
Arxbias = A = F‘elAr;l = F:(Ar;(bias

So if the disturbance is in the subspace spanned by F|, the
perturbed system will be completely equivalent to its non-
perturbed version, but with a shifted source.

3.2 Additive noise

The same kind of reasoning can be applied to additive noise,
denoted as n. The form-factor will now be expressed as :

F, (rx,re, +Are,,n) =F+F,Ar,+Fn
The total disturbance is now the sum of disturbances pro-
duced by the positioning sensitivity and the noise sensitiv-
ity F, . Similarly to the previous computations :

Ay =(FIF.) F!(F,Ar, +F,n) ®)

xbias

3.3 External sources

The contribution of additional sources to the measurement
can be written as:

Y ext Z hexz xext

Similarly to the previous sections, we can prove that the re-
semblance bias caused by this external source is:

N =(FIE) E Y Foby i Ve o = !

Wexa || Xexe 9)
h”x

It can be noticed that this bias is proportional to the power of
the external signal in respect to the signal produced by the
source, but at the same time it strongly depends on the corre-
lation between the external form-factor and the source posi-
tion sensitivity function. If the signal produced by the exter-
nal sources is orthogonal to the sensitivity function F,, no
deviation of the maximum is present.

Considering also additive noise and electrode misplacement:

Ny =(FIE) F(Fbr, + Ent Y Foy, ) (10)

xbias exi

This time the strength of the signal of the external source is
divided by the strength of the original perturbed signal.
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4. LOCALIZATION VARIANCE

All the previous computations implicitly supposed a deter-
ministic form of disturbances. Generally these are unknown
parameters, which can be considered to be generated by a
random process. In this case the resemblance bias will also
be a random process, and we need to evaluate its parameters.
The mean bias can be straightforward obtained from (10):

N =(F/E) F(F A+ Ent Y E, v ) (D)

xbias

When the perturbing processes are zero-mean, which natu-
rally should be the case, the measurement bias is, on average,
null. The same thing can not be asserted about its variance.

If the covariance matrix of the perturbations, RPP , 1s known,
then:
Rypn, =(F'F) FH(SFRF)F(FF) (12)

Equations (11) and (12) provide us with the localization
power of a sensor system. Indeed, for a certain perturbation
level, the system will be unable (on the average) to distin-
guish between different source positions that are inside a
zone defined by the variance of the resemblance bias.

Next it will be shown how the formula (12) links to the
Cramér-Rao bound.

5. SPATIAL RESOLUTION AND THE CRAMER-
RAO BOUND

Finding the location of a source is equivalent to finding its
form-factor. From this point of view, the problem can be re-
considered as the estimation of the position from the noisy
measurement of its form-factor degraded either by the posi-
tioning error, additive noise or external sources.

Using the linear approximation, in case of positioning error
the degradation process can be put in equation as (4):

F =F+F,Ar,

m

If the positioning error is a Gaussian process N (O, R, A, ) ,

the perturbation F,Ar, is also a Gaussian process and the

minimum bound for the estimation is (using the general form
of the Cramér-Rao bound [5]) :

2 -1 t
P Y AT
- OF Ox OF
or, oY
Rﬁr‘ = (a_;.J P‘elRAre,Ar‘,, F;/ (GFJ

In the least square sense, and using (4):
OF = F.or, = or, =(F/F,) F/oF

(13)

Replacing in (13) we find the same result as (12). Thus our
deterministic resemblance bias model leads to the statistical
Cramér-Rao bound for the case of Gaussian perturbations.

6. SYSTEM OPTIMALITY CRITERIA

We show in this section how the previous results can be used
for optimal system design. First, based on (12) we define the
resolution cell A of the system:

A= diag(R

AL pias Alipias )
Considering that the regions of interest for source localiza-
tion are known (which should be the case for a BCI oriented
system), the sensors can be optimally placed such as to
achieve maximum resolution power in that area, or equiva-
lently minimize the resolution cell A under the constraints of
the sensor system (e.g. number of sensors):

r, =argmin(A) (14)
The minimization of this functional requires knowledge of
perturbations statistics (noise, nuisance sources etc.). This
minimization can be seen as a search for the system that pos-
sesses the minimum Cramér-Rao lower bound among all.

7. OPTIMIZATION

Placing N electrodes on the head surface is a continuous
combinatorial-like problem. We want to minimize the di-
agonal terms of the covariance matrix (12).We define our
minimization functional based on (14):

Errd =Tr (RAI;W\M'W" ) 1)

Supposing the perturbations to be independent, we introduce
the perturbation vector which contains the errors induced by
each type of nuisance:

errf = [Ar Ar Arth_s__”] (16)

xbias _ext xbias _el

Notice that the squared norm of this vector is our minimizing

functional in (15). However, we need to add a supplementary

term to the vector in (16). Indeed, from equations (1) and (4):

F;:(]_FFz)h_x’ = oh
[

Considering equation (9), the influence of external sources

can be rewritten as:

SR
Arxbiasiext = <F;’F;) lm(Fext _F<F’ F;n))yextix

One obvious minima will occur if F

ext
what we want to avoid, so we need to force our minimization
towards the second minima, which implies F,, 1 4 and

ext
F L F . This way, the signal from the nuisance sources
will be orthogonal to the sensitivity function and to the rele-
vant signal, thus easy to discard. We reinforce the later or-

thogonality through the supplementary term:

1
orth — T(F’ F;,rt >y3x17x

X

= F . This is exactly

A

Finally, the sensor position are given by:

7, = argmin ( Err®) = arg min ("errf"2 )

A]” xbias _n :'
Given the nature of our problem, we used a hybrid Simulated
Annealing ([6]) with Gradient Descent algorithm for minimi-
zation. The algorithm is briefly described below:

e Move one clectrode until the configuration is accepted
AErr® J

k-Err®

(17)
Ar

orth

Ar

xbias _ext xbias _el

errf = [Ar

according to SA probability law p = exp(—
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o Apply gradient descent

o If Err®,  <Err® , replace Errd
save the configuration

e Loop.

=FErrd®__ and

min new

8. RESULTS AND DISCUSSION

Using analytical expansions into Legendre polynomials for
the computation of the scalp potentials on a unit radius
spherical 4-layer isotropic head model ([7], [8]) we simulated
a relevant source producing the upper side of the potential
shown in Figure 1. We used as perturbations additive Gaus-
sian noise with a PSNR of 10 dB, electrode misplacements of
standard deviation 5° (spherical coordinates), and an external
source of equivalent power producing the lower side of the
potential in Figure 1.We considered 4 electrodes and opti-
mized their placement for different combinations of perturba-
tions, according to (17). Figure 1 shows an optimal sensor
placement for robustness against the external source (left)
and the optimal sensor placement when considering jointly
all perturbations (right).

Figure 1. Optimal sensor configurations

The configuration optimized for external sources is dictated
by the orthogonality conditions imposed, while the necessity
of robustness against noise pushes the electrodes in the zone
of maximum source intensity.

In order to test the obtained configurations, we have com-
puted the signal produced by the relevant source on the spe-
cific sensor configurations, perturbed it and then used a cor-
relation detector to recover the position of the source. The
localization errors are presented in Table 1. Each column
represents a type of perturbation and each row a sensor con-
figuration, optimized for the specified perturbations. The row
named HUG corresponds to a standard 123 electrode cap
from the Hopital Universitaire de Geneve, courtesy of
R.Grave de Peralta and S. Gonzalez. The last row shows av-
erage results for a set of 1000 random configurations, tests
performed with reduced perturbations (standard deviation
divided by 100).

ext (equiv) el (5°)  |noise (10dB)ext+el+noise]
ext 0.011 0.138 0.160 0.161
ext+tel 0.065 0.105 0.127 0.134
ext+noise 0.065 0.105 0.109 0.127
el+noise 0.084 0.104 0.111 0.129
exttel+noise| 0.072 0.106 0.110 0.126
HUG 0.094 0.068 0.057 0.098
rand, std/100| 0.067 0.031 0.096 0.100

Table 1. Localization errors of selected configurations. el is
short for electrode misplacement, ext for external source

The optimized configurations have performed much better
than random configurations, yielding the same magnitude of
errors for much higher perturbations (40 dB difference).
Moreover their performance is equivalent to that of the 123
electrode system. One may also notice how the first configu-
ration (Figure 1, left) outperforms all other configurations
when tested for robustness against external sources (includ-
ing the HUG 123 electrodes configuration), and that optimi-
zation for robustness against noise seems to imply robustness
against electrode misplacement also. This is quite natural, as
the random movements of electrodes are equivalent to ran-
dom variations of the signal’s amplitude.

9. CONCLUSION

We have studied in this paper the localization properties
inherent to an EEG sensor system in the context of a Brain
Computer Interface. We have used our results to derive prin-
ciples for the optimal design of such a system. We have
proved that systems based on such principles can perform as
well as normal systems with a much higher number of elec-
trodes. More importantly, we have proved that it is possible
to impose near-orthogonality of signals from different
sources through optimal sensor placement, allowing for
straightforward source identification.

We intend to pursue this approach and design a sensor sys-
tem which would be composed out of optimal subsystems,
each dedicated to one specific brain region, thus allowing
for robust source identification and reconstruction.
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