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ABSTRACT
Turbo BLAST(Bell LAb’s Layered Space Time) [1] detec-
tion and decoding has demonstrated promising performance
for coded BLAST systems. In Turbo BLAST system, an
iterative interference cancellation and decoding approach is
adopted to simplify processing. The interference is estimated
using the extrinsic information from the decoder, which we
refer as extrinsic estimator. In this paper, we propose an opti-
mal Minimum Mean Square Error (MMSE) interference es-
timator for Turbo BLAST system. We show that the mean
square error of interference estimation is improved using the
proposed estimator. As a result, for QPSK system, the Turbo
BLAST system using the MMSE estimator achieves supe-
rior performance compared to extrinsic estimator at low and
medium SNR regions. At high SNR’s, performance of both
systems converges to the performance lower bound. For
Turbo BLAST system with 16QAM modulation, using the
extrinsic estimator leads to divergence of the bit error rate
(BER) performance, while using the proposed estimator, the
BER still converges to the lower bound.

1. INTRODUCTION

It was shown in [2] that large capacity can be exploited in
rich scattering wireless channels by employing multiple an-
tennas at both the transmitter and the receiver. The BLAST
[2] [3] structure was proposed to realize such systems. The
reported spectral efficiency of the prototype Vertical-BLAST
(VBLAST) system reaches 20 to 40 bps/Hz at average SNR’s
between 24 to 34 dB.

Error control coding (ECC) can be employed in BLAST
systems to improve its robustness against fading. Iterative
detection and decoding, where soft reliability information is
exchanged iteratively between the detector and decoder, was
proposed in [4] for multiuser detection in coded CDMA sys-
tems. The concept is extended to BLAST system and Turbo
BLAST was proposed in [1]. In Turbo BLAST system, an
iterative interference cancellation and decoding scheme is
adopted. The interference is estimated as the statistical mean
of the transmitted signal calculated from the extrinsic infor-
mation at the output of the soft input soft output (SISO) max-
imum a posteriori probability (MAP) decoder. We, there-
fore, refer it as the extrinsic estimator in the rest of the paper.

In this paper, we propose a new MMSE interference es-
timator for Turbo BLAST systems, which minimizes the
power of the residue interference in Turbo detection. We fur-
ther evaluate the BER performance of Turbo BLAST system
using the proposed estimator through computer simulations.
We show that for system using QPSK modulation, using the
proposed estimator, the performance of the Turbo BLAST
system is improved at medium and low SNR regions com-
pared to using extrinsic estimator. At high SNR region, both

the proposed estimator and extrinsic estimator leads to BER
convergence to the low performance bound. For system em-
ploying 16QAM modulation, the BER using the proposed es-
timator is significantly better than using the extrinsic estima-
tor in all SNR regions. For a VBLAST system with 4 trans-
mit antennas and 6 receive antennas, the proposed scheme
reaches the lower BER bound at 8.5 dB. However the BER
using the extrinsic estimator fails to converge.

The rest of this paper is organized as follows. In Sec-
tion II, we introduce the system model of horizontal-coded
VBLAST system and the conventional Turbo BLAST de-
tector and decoder. The new MMSE interference estima-
tor is proposed in Section III. In Section IV, we present the
performance of the MMSE interference estimator for Turbo
BLAST systems in terms of MSE (Mean Square Error) of in-
terference estimation and BER. The conclusion is drawn in
Section V.

2. SYSTEM DESCRIPTION

For coded BLAST systems, it was shown in [5] that indepen-
dent coding on each data stream (horizontal coding) results
in the best performance, compared with vertical coding and
hybrid coding structures. Therefore, in this paper, we focus
on the study of horizontal encoding with convolutional code.
Figure 1 depicts the diagram of a horizontal-coded VBLAST
system transmitter, on which the encoding, bit interleaving
and constellation mapping are performed independently on
each data stream. For a m×n (m denotes the number of trans-
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Figure 1: Horizontal-coded VBLAST system transmitter

mit antennas and n denotes the number of receive antennas)
VBLAST system, the received signal is given by

r = Hx+n, (1)

where H is a n×m channel matrix with Hi, j representing
the channel response between transmit antenna j and receive
antenna i. x denotes the transmit signal from m transmit an-
tennas and n is the AWGN noise vector with variance η2.
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Figure 2: Conventional Turbo BLAST detector and decoder
using extrinsic information for interference cancellation

Figure 2 depicts the conventional Turbo BLAST iterative
detector and decoder [1]. The received signal is first passed
through an MMSE interference suppression filter given by
w

H
i = h

H
i
[
HH

H +η2
I
]−1 with hi indicating the ith column

of H. To detect x1, we calculate

y1 = w
H
1 (Hx+n)

= w
H
1 h1x1

︸ ︷︷ ︸

desired signal

+w
H
1 (h2x2 + · · ·+hmxm)

︸ ︷︷ ︸

Inter f erence

+ w
H
1 n

︸ ︷︷ ︸

AWGN noise

, (2)

which consists the desired signal, the interference from the
other transmit antennas and the AWGN noise.

From [6], the distribution of the interference plus the
AWGN noise can be well approximated by Gaussian. There-
fore, we can write y1 using an equivalent AWGN channel
model y1 = a1x1 + ñ, where a1 = w

H
1 h1 is the equivalent

channel gain and variance of ñ, σ 2
1 = a1 − |a1|2 [4]. To ex-

plain the bit metric calculation of the transmitted bits, we use
λ with subscript det and dec to denote the a posteriori Log
Likelihood Ratio (LLR) obtained from the detector and de-
coder respectively. We also use λ , λ a and λ e to indicate the
a posteriori, a priori and extrinsic LLR.

Let ci
k be the kth bit of xi, the LLR of coded bits ci

k is
defined as

λdet(c
i
k) = ln

P(ci
k = 1|yi)

P(ci
k = 0|yi)

= λ e
det(c

i
k)+λ a

det(c
i
k), (3)

where the a posteriori LLR is the sum of the extrinsic LLR
and the a priori LLR.

To calculate the extrinsic LLR of ci
k, we denote χ1

k and
χ0

k as the subsets of all the constellation points χ , with ele-
ments having the kth bit equal to 1 and 0, respectively. Subse-
quently, λ e

det(c
i
k) after the MMSE detection can be obtained

as

λ e
det(c

i
k) = ln

P(yi|ci
k = 1)

P(yi|ci
k = 0)

= ln
∑xi∈χ1

k

[
1√

2πσi
exp
(

− |yi−aixi|2
2σ2

i

)

P(xi)
]

∑xi∈χ0
k

[
1√

2πσi
exp
(

− |yi−aixi|2
2σ2

i

)

P(xi)
]

(4)

Assuming all xi’s are equal likely, (4) can be further simpli-
fied to

λ e
det(c

i
k) = ∑

xi∈χ1
k

[

−|yi −aixi|2
2σ 2

i

]

− ∑
xi∈χ0

k

[

−|yi −aixi|2
2σ 2

i

]

(5)

The extrinsic LLR λ e
det(c

i
k) is passed through the de-

interleaver, the output of which forms the a priori LLR to
be used by the SISO decoder

λ a
dec(c

i
k) = Π−1(λ e

det(c
i
k)), (6)

where Π−1 denotes de-interleaving.
The diversity achieved through MMSE interference sup-

pression is only 1. To fully explore the diversity of BLAST
system, the soft reliability information from the output of the
SISO decoder is feedback to perform soft interference can-
cellation and maximal ratio combining (MRC) as following,

ỹk =h
H
k

(

r−
m

∑
i=1,i6=k

hix̂i

)

=h
H
k

(

hkxk +
m

∑
i=1,i6=k

hi(xi − x̂i)+n

)

,

(7)
where x̂i indicates the soft estimate of the transmitted signal
xi from the SISO decoder output. For extrinsic estimator,
x̂i =E(xi), where E denotes statistical expectation. For an
M-ary modulation system, it is the function of the extrinsic
LLR λ e

dec(c
i
k) for k = 1, · · · ,M of all the coded bits ci

k of xi
from the SISO decoder. For example, the extrinsic estimate
for QPSK modulated signals is given by

E(xi) =
1√
2

{

tanh

(

λ e
dec(c

i
1)

2

)

+ j · tanh

(

λ e
dec(c

i
2)

2

)}

. (8)

if the mapping rule is xi = 1√
2

[
(2ci

1 −1)+ j(2ci
2 −1)

]
.

3. MMSE INTERFERENCE ESTIMATOR

From (7), we can see the total noise after MRC is the sum
of the residue interference xi − x̂i and the Gaussian noise. In
this paper, we propose a new estimator which minimizes the
power of the residue interference. The cost function can be
formulated as:

J(x̂i) = E
[
|xi − x̂i|2

]
. (9)

The expectation is taken over all possible values of xi, which
belongs to the constellation set χ , and yi.

Expanding (9), we get

J(x̂i) =
∫

yi
∑

xi∈χ
|xi − x̂i|2P(xi,yi)dyi

=

∫

yi

[

∑
xi∈χ

|xi − x̂i|2P(xi|yi)

]

P(yi)dyi

(10)

where P(•) denotes probability.
Since P(yi) ≥ 0 for all the values of yi, the cost func-

tion can be minimized by minimizing the terms in the square
bracket for each value of yi. The optimal MMSE solution can
be found as

x̂i = ∑
xi∈χ

xiP(xi|yi) = E(xi|yi) , (11)
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which is same as the Bayesian’s estimator given in [7].
To obtain E(xi|yi), we make use of the LLR of coded bits

from the output of the SISO decoder. The expected value of
ci

k given yi can be calculated as

E(ci
k|yi) = (+1)P(ci

k = +1|yi)+(−1)P(ci
k = −1|yi)

= (+1)
exp
(
λdec(c

i
k)
)

1+ exp
(

λdec(c
i
k)
) +(−1)

exp
(
−λdec(c

i
k)
)

1+ exp
(

−λdec(c
i
k)
)

= tanh

(

λdec(c
i
k)

2

)

. (12)

For QPSK modulated signal, x̂i can be calculated as

x̂i = E(xi|yi) =
1√
2

[
E
(
ci

1|yi
)
+E

(
ci

2|yi
)]

=
1√
2

[

tanh
(

λdec(c
i
1)

2

)

+ j tanh
(

λdec(c
i
2)

2

)]

.

(13)

For 16QAM modulated signal, x̂i is given by

x̂i =
−3exp[−λ (ci

1)−λ (ci
2)]−exp[−λ (ci

1)]+3exp[−λ (ci
2)]+1

√
10(1+exp[−λ (ci

1)])(1+exp[−λ (ci
2)])

+ j
−3exp[−λ (ci

3)−λ (ci
4)]−exp[−λ (ci

3)]+3exp[−λ (ci
4)]+1

√
10(1+exp[−λ (ci

3)])(1+exp[−λ (ci
4)])

(14)
Here, all the λ ’s denotes LLR information from the SISO
decoder. We omit the subscript dec to avoid long equations.

Compare this with the extrinsic estimator, we are now us-
ing the a posteriori LLR from the SISO decoder rather than
the extrinsic LLR to estimate the interference in (2). As the
calculation of the new estimate is the same as the conven-
tional approach, no extra complexity is involved using the
new estimator. Using the new estimate, we are able to obtain
a lower MSE of interference estimation. As a result, the pro-
posed estimator leads to better BER performance in Turbo
BLAST systems.

4. SIMULATION RESULTS

In this section, we present the simulation results of the Turbo
BLAST system using the proposed MMSE estimator. The
system is a bit-interleaved convolutional-coded BLAST sys-
tem with horizontal encoding. The channel is narrow band
fast and flat Rayleigh fading. We assume the channel re-
sponse between different pairs of antennas are uncorrelated.
We also assume perfect channel state information at the re-
ceiver. The error control coding used in the simulations is
a half-rate convolutional code with constraint length of 7
and generator polynomials g0 = 1338 and g1 = 1718. Inter-
leaving is done in two stages. The first stage maps adjacent
coded bits onto nonadjacent constellation symbols, while the
second guarantees that adjacent coded bits are mapped alter-
nately onto less and more significant bits of the constellation
[8].

Figure 3 shows the comparison of the MSE for the pro-
posed estimator using a posteriori LLR and the extrinsic es-
timator using extrinsic LLR for three different Eb

N0
values.

There are 8 transmit and 8 receive antennas in the system
and QPSK modulation is used. We can see for all the three

cases, the MSE using the proposed estimator is significantly
better. As a result, a better estimate is provided for inter-
ference cancellation, which leads to less residue interference
and better BER performance.
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Figure 3: MSE of interference estimation using different es-
timators (8×8 coded BLAST system QPSK modulation)

Figure 4 compares the MSE using the proposed MMSE
estimator and the extrinsic estimator for system using
16QAM modulation for 3 different Eb

N0
values. Here, we use

a VBLAST system with 4 transmit and 6 receive antennas.
Again we can see that the MSE produced by the MMSE esti-
mator is significantly lower compared to extrinsic estimator.
An interesting observation is that using the extrinsic estima-
tor, the MSE fails to converge through iterations. This will
lead to worse BER performance with larger number of iter-
ations using the extrinsic estimator for 16 QAM systems, as
we are going to show later.
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Figure 4: MSE of interference estimation using different es-
timators (4× 6 coded BLAST system, 16QAM modulation)

Figure 5 shows the BER performance of an 8× 8 Turbo
BLAST system using the proposed MMSE estimator. In
comparison, we include the BER using the extrinsic estima-
tor as well. Also shown in the figure is the low bound for
Turbo BLAST system, which is obtained by assuming per-
fect estimation of interference so that the interference can be
removed completely. We can see that with both estimators,
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the BER of the Turbo BLAST is improved through iterations.
In practise, we only need to perform 3 iterations as the im-
provement from the 3rd to the 4th iteration, for both cases,
is marginal. We can see the Turbo BLAST system with the
MMSE estimator has clearly better performance over extrin-
sic estimator. We can achieve a performance gain of 0.5dB at
BER of 10−3 and 0.45dB at BER of 10−4. For higher SNR
values, as shown in Figure 3, the MSE for both estimators
is small. The difference between the MSE’s of two estima-
tors becomes less important as the Gaussian noise becomes
dominant in the total noise contribution in (7). Hence, the
performance difference of Turbo BLAST system using two
estimators becomes smaller. The BER of both system merges
with the lower BER bound at high SNR region.
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Turbo BLAST with Extrinsic Est

Figure 5: Comparison of BER performance for Turbo
BLAST system using the proposed estimator and extrinsic
estimator (8×8 coded BLAST system, QPSK modulation).

Figure 6 shows the comparison of BER performance for
a 16-QAM modulated Turbo BLAST system with 4 trans-
mit and 6 receive antennas using the MMSE estimator and
the extrinsic estimator. Again we can see using the proposed
estimator, the BER of the system is improved by perform-
ing more iterations. Only 3 iterations are necessary since
the improvement by performing more than 3 iterations is
marginal. The BER using the proposed estimator converges
to the lower BER bound at 8.5 dB. However, using the extrin-
sic estimator, the BER of the Turbo BLAST system is getting
worse performing more iterations. This is expected because
the extrinsic interference estimator produces large MSE for
larger number of iterations as shown in Figure 4.

5. CONCLUSION

In this paper, we proposed a new MMSE estimator for Turbo
BLAST systems. We show that this proposed estimator min-
imizes the power of the residue interference in the iterative
interference cancellation stage. It results in much lower MSE
of interference estimation, hence less residue interference,
compared to the conventional extrinsic estimator. From the
simulation result, we observe for QPSK modulated Turbo
BLAST system, the BER using both estimators can converge
to the lower performance bound, while the proposed estima-
tor gives superior performance at medium to low SNR. For
higher order modulations, such as 16 QAM, using the pro-
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Figure 6: Comparison of BER performance for Turbo
BLAST system using the proposed estimator and extrinsic
estimator (4 × 6 coded BLAST system, 16QAM modula-
tion).

posed estimator, the BER of Turbo BLAST system can still
converge to lower BER bound, however, the BER fails to
converge using the conventional extrinsic estimator.
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