
AUDIBLE (NORMAL) SPEECH AND INAUDIBLE MURMUR RECOGNITION
USING NAM MICROPHONE

Panikos Heracleous, Yoshitaka Nakajima, Akinobu Lee, Hiroshi Saruwatari, Kiyohiro Shikano

Graduate School of Information Science
Nara Institute of Science and Technology, Japan

8916-5 Takayama-cho Ikoma-shi Nara 630-0192, Japan
e-mail:

�
panikos,yoshi-n,ri,sawatari,shikano � @is.aist-nara.ac.jp

ABSTRACT

In this paper, we present audible (normal) speech and inaudi-
ble murmur hidden Markov models based automatic speech
recognition using NAM microphone. The NAM (Non-
Audible Murmur) microphone is a special device, which can
be used for capturing inaudible murmur speech. The device
is based on the stethoscope, which is used in medical sci-
ence. By attaching the NAM microphone behind the talker’s
ear, we can receive very quietly uttered speech and perform
automatic speech recognition in a conventional way. Privacy,
robustness to environmental, and a useful tool for sound-
impaired people noise belong to the advantages of the NAM
microphone. Using adaptation techniques, we created hid-
den Markov models for inaudible speech and we performed
automatic speech recognition. The achieved results are very
promising, and prove the effectiveness of NAM microphone
In this paper, we also introduce our work for recognizing
normal speech using NAM microphone. The idea is to take
advantage of noise robustness of NAM microphone. In our
experiments, we achieved a 93.8% word accuracy in clean
environment, and a 93.1% word accuracy in noisy environ-
ment. In this paper, we also introduce two techniques to
intergrate inaudible murmur and audible speech recognition
using NAM microphone. In both cases, we achieved a 92.1%
word accuracy on average, which is a very promising result.

1. INTRODUCTION

The NAM (Non-Audible Murmur) microphone [1] is a spe-
cial, new device able to capture inaudible murmur speech
(NAM speech), which cannot be heared by listeners near
the talker. The device is based on the stethoscope, which is
used in medical science. By attaching the NAM microphone
behind the talker’s ear, we can receive very quietly uttered
speech, and perform automatic speech recognition in a con-
vectional way. Privacy, robustness to environmental noise,
and a useful tool for sound-impaired people are the advan-
tages of NAM microphone, when it is applied in a speech
recognition system. Figure 1 shows the attachment of NAM
microphone to the talker. The optimal position of the attach-
ment was determined experimentally. Although the NAM
signal is of poor quality, the signal envelope is similar to that
of normal speech, and therefore speech recognition is possi-
ble.

In previous work [2], we introduced the experiments and
results for recognition of inaudible murmur. Using speech
received by NAM microphone, we created hidden Markov
models (HMM) for inaudible speech recognition. Instead of
creating speaker-independent HMMs, or speaker-dependent
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Figure 1: NAM microphone attached to the talker

HMMs trained with a large amount of data, we used adapta-
tion techniques to create acoustic models for inaudible mur-
mur recognition. Adaptation is a widely used technique for
creating speaker, or environment specific acoustic models,
when limited training data are available. The maximum like-
lihood linear regression adaptation (MLLR) technique [3]
was selected in our work.

We carried out experiments using two kind of initial
HMMs. In the first case, we used normal-speech HMMs as
initial models. In the second case, we extended our work
by collecting NAM data from several speaker to train NAM
initial models. Since the NAM speech characteristics are dif-
ferent from normal speech characteristics, a modified version
of the MLLR was used in our work. More specifically, due
to the big difference between initial models and adaptation
data, the conventional single-iteration MLLR is not effec-
tive in NAM recognition. The iterative MLLR appears to
be more effective, and results show that it provides higher
performance. Our proposed method is similar to that pro-
posed by Woodland et. al,[4], but the object is different.
However, we try to increase the performance of MLLR by
increasing the number of iterations and using the same adap-
tation data at each pass, based on the fact the MLLR is based
on Expectation Maximization (EM) method. Figure 2 show
the proposed method. The initial models are adapted using
the MLLR technique and a small amount of adaptation ut-
terances. As a result, intermediate models are created. The
intermediate adapted models are re-adapted using the same
adaptation data, and this procedure is continued until no fur-
ther improvement is obtained.

Figure 3 shows the results of inaudible murmur recog-
nition. In this experiment, the recognition engine is Julius
20k vocabulary Japanese Dictation Toolkit [6]. For test-
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Figure 2: Iterative MLLR for NAM recognition
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Figure 3: Word accuracy of inaudible murmur recognition

ing, 72 utterances were used recorded under several environ-
ments (quiet, music, TV-news). The achieved results show
the effectiveness of the iterative MLLR. As can be seen,
with single iteration MLLR the performance of the system
is very low. By increasing the number of iterations, the per-
formance is drastically increased. More specifically, using
normal-speech initial HMMs we achieved after 6 iterations
a 88.62% word accuracy. Using NAM-speech initial HMMs
we achieved after 4 iterations a 90.3% word accuracy. Re-
sults show also the importance of the initial HMMs. In the
case of NAM-speech initial models, the initial performance
is 62.7% (-0.81% when using normal-speech initial models).
Therefore, with less number of iterations we achieved higher
performance.

2. AUDIBLE (NORMAL) SPEECH RECOGNITION
USING NAM MICROPHONE

The obtained results show the effectiveness of NAM micro-
phone in inaudible murmur recognition. Using NAM micro-
phone and a small amount of adaptation data, we recognized
speech uttered very quietly with very high accuracy. There-
fore, NAM microphone can be used as a part of a recognition
system, when privacy in communication is very important
(e.g. telephone speech recognition applications). A NAM
based speech recognition system, however, has limited appli-
cations. Moreover, it requires a special and, less user friendly
way in human-machine communication, which is not always
necessary. For practical reasons, the system should be able
to recognize audible (normal) speech, too.

Figure 4: Normal speech waveform - Close-talking micro-
phone

Figure 5: Normal speech waveform - NAM microphone

In this paper, we focus on this problem. First, we prove
that NAM microphone can be used very effectively for au-
dible (normal) speech recognition, taking also advantage of
its robustness against noise. In the following, we implement
two baseline approaches to integrate audible speech and in-
audible murmur recognition. The first approach is a GMM
(Gaussian Mixture Model) based discrimination, and the sec-
ond one is based on parallel speech recognizers. Experimen-
tal results show very high performance for both methods.

Figure 4 shows the waveform of a normal-speech sig-
nal received by a close-talking microphone. Figure 5 shows
the same signal received by a NAM microphone. The two
signals are synchronized, due to a two-channels recording.
The figures show the high similarity between the two sig-
nals. Figures 6 and 7 show the spectrograms of the received
speech signals. As can be seen, the signal received by the
NAM microphone has limited frequency band, compared to
signal received by the close-talking microphone. As a result,
the quality of the signal received by the NAM microphone is
lower. For speech recognition, however, the similarity in the
signal envelope is sufficient. The different frequency char-
acteristics of the two signals require different approach for
speech recognition. More specifically, the acoustic models
used to recognize normal speech received by a close-talking
microphone cannot be used for recognition of normal speech
received by a NAM microphone. Therefore, it is necessary
to create a new acoustic models set.

The HMM set for recognition of audible speech received
by NAM microphone is created using iterative MLLR. A
128-class regression tree, 350 adaptation utterances, and 4
iterations are used. The initial HMMs used in these exper-
iments are Phonetic Tied Mixture (PTM) models with 3000
states [7]. The models are trained using the speech corpus
collected by the Acoustical Society of Japan [5]. For evalua-
tion, 72 NAM utterances, recorded under several conditions
(quiet, background music, TV-news) are used. The speech
recognition engine is the Julius 20k vocabulary Japanese
Dictation Toolkit. For comparison, we created HMM for
recognition of normal speech received by a close-talking mi-
crophone. Single-iteration MLLR with 32-class regression
tree, and 100 adaptation utterances is used. Table 1 shows
the system specifications.
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Figure 6: Normal speech spectrogram - Close-talking micro-
phone

Figure 7: Normal speech spectrogram - NAM microphone

Table 2 shows the achieved results. As can be seen, in
quiet environment the speech received by NAM microphone
is recognized with slightly lower accuracy. The reason is the
information lost during body transmission. In the case, how-
ever, when there is background noise (music, TV-news) the
recognition of audible speech received by NAM microphone
shows higher performance. Although under noisy environ-
ments the performance decreases, we observe that the de-
creases is not significant. More specifically, in a quiet envi-
ronment we achieved 93.8% word accuracy, and in noisy en-
vironments 93.2% and 92.9%, respectively. The achieved re-
sults are very promising and prove the effectiveness of NAM
microphone for audible speech recognition, too. Especially,
in noisy environments this is a very important advantage.

3. INTEGRATED AUDIBLE AND INAUDIBLE
MURMUR RECOGNITION

A challenging topic is to integrate audible (normal) and in-
audible murmur recognition. In the previous sections, we
showed the effectiveness of NAM microphone in inaudible
murmur and audible (normal) speech recognition. A recog-
nition system, which combines recognition of the two kind
of speeches using NAM microphone can be very flexible
and practical. However, in cases when privacy is not im-
portant user can talk in a normal manner. On the other hand,
users can communicate with a speech recognition based sys-
tem in a way, that other listeners cannot hear their conversa-

Table 1: System specifications
Sampling frequency 16 kHz
Frame length 25 ms
Frame period 10 ms
Pre-emphasis 1 � 0 � 97z � 1

Feature vectors 12-order MFCC,
12-order ∆MFCCs
1-order ∆E

HMM PTM , 3000 states
Training data JNAS database
Test data 72 NAM utterances

Table 2: Recognition rates for audible speech
Word Accuracy [%]

Microphone Environment
Quiet TV-news Music

Close-talking 94.4 91.7 91.9
NAM 93.8 93.2 92.9

GMM

GMM

D ecis ion

H MM

Recognizer

H MM

N A M

N orm a l

N A M

N orm a l

N A M
m icrop h one NS

MS
NM SS >

MN SS >

Figure 8: GMM based discrimination

tion. Moreover, in noisy environments a NAM microphone
based system shows significant robustness against environ-
mental noise. In this section, we introduce two techniques
to integrate inaudible murmur and audible speech recogni-
tion. Both approaches are based on case-dependent HMMs
created using iterative MLLR.

3.1 Gaussian Mixture Models (GMM) based discrimi-
nation

The first approach is based on GMM based discrimination.
Two GMM (one-emitting state HMM) were trained using au-
dible speech and inaudible murmur received by NAM micro-
phone, respectively. The transcriptions of the uttered speech
were merged to form only one model. Figure 8 shows the
block diagram of the system. A NAM microphone is used to
receive the uttered speech. After analysis, matching is per-
formed between the input speech and the two GMMs. The
matching provides a score for each GMM. These scores are
used by the system to make decision about the input speech.
Then, the system switches to the corresponding HMMs and
speech recognition is performed in a conventional way. The
HMM sets used in this experiment are the same as in the ex-
periments described in the previous sections.

To evaluate the performance of the method, we carried
out a simulation experiment using 24 inaudible murmur ut-
terances and 30 audible speech utterances. Figure 9 shows
the histogram of the duration normalized scores of the two
GMMs, when the input signal is audible speech. As can be
seen, in all the cases the score of the GMM corresponding to
normal speech (SN) is higher, than the score of GMM corre-
sponding to inaudible murmur speech. Therefore, based on
these scores the HMM set is selected correctly. Figure 10
shows the histogram of the GMM scores, when the input sig-
nal is inaudible murmur. The figure shows, that the scores of
inaudible murmur GMM are higher, and therefore the correct
HMM set is selected in this case, too. The system achieved
a 92.1% word accuracy on average, which is a very promis-
ing result. Although the system shows high performance, the
delay necessary for the GMM matching is a disadvantage.
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Figure 9: GMM normalized scores - Input normal speech
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Figure 10: GMM normalized scores - Input inaudible mur-
mur

3.2 Using parallel speech recognizers

To overcome the problem of the delay, we introduce another
method based on parallel speech recognizers. Two recogniz-
ers using different HMMs (audible speech, inaudible mur-
mur) operate in parallel providing two hypotheses with their
scores. The system selects the hypothesis with the higher
score as the correct recognition result. Figure 11 shows the
block diagram of the system. Table 3 show the comparisons
of the two scores. As can be seen, the appropriate hypothesis
is correctly selected. Using the same test set as in the previ-
ous section, the system achieved a 92.1% word accuracy in
this case, too. The disadvantage of this method is the higher
complexity due to the two recognizers.

4. CONCLUSION - FUTURE WORK

In this paper, we introduced results of experiments, which
prove the effectiveness of NAM microphone in audible (nor-

Table 3: Parallel speech recognition based integration
DECISIONS

TEST SET SM � SN SN � SM
24 NAM 24 0
30 Normal 0 30

HMM

R ec og n iz er

HMM

R ec og n iz erN A M
m ic r ophon e

D ec ision

N A M

N or m a l

Hypothesis
Mu r m u r

Hypothesis
N or m a l

MS

NS

NM SS >

MN SS >

Figure 11: Parallel recognizers based recognition

mal) speech recognition, too. Using a NAM microphone as
input device for normal speech recognition, we achieved in
clean environment a 93.8% word accuracy, and in noisy en-
viroment a 93.1% word accuracy on average. We also imple-
ment two basic approaches to intergate audible speech and
inaudible murmur recognition based on NAM microphone.
A GMM based discrimination and a parallel speech recog-
nizers based method were presented. Both methods achieved
a 92.1% word accuracy on average, which is a very promis-
ing result. As future work, we plan to use NAM microphone
to recognize audible speech and inaudible murmur in more
noisy environments. The experiments described in this paper,
use speaker-dependent HMMs trained using MLLR adapta-
tion. Currently, we are collecting speech data using NAM
microphone to train speaker-independent HMMs.
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