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ABSTRACT

Based on the equation-error approach, a weighted least
squares algorithm with a generalized unit-norm con-
straint is developed for unbiased infinite impulse re-
sponse (ITR) system identification in the presence of
white input and/or output noise. Through using a
weighting matrix, the proposed estimator can be consid-
ered as a generalization of the Koopmans-Levin method
and it produces better estimation accuracy. Computer
simulations are included to evaluate the estimator per-
formance for IIR parameters in different conditions.

1 Introduction

The problem of identifying linear systems from their in-
put and output measurements has received considerable
attention because of its important applications in signal
processing, communications and control [1]-[2]. In the
general case of infinite impulse response (IIR) system
identification, there are two common configurations [3]
to tackle the problem, namely, output-error (OE) and
equation-error (EE), which correspond to minimization
of multimodal and quadratic error functions, respec-
tively. In this paper, the EE approach is considered
because it has the main advantage of global conver-
gence over the OE approach, although compensation of
the parameter bias [3] induced by measurement noise is
required in order to achieve unbiased estimation.

In the presence of white output noise only, Regalia
[4] has proposed to minimize the EE cost function sub-
ject to a unit-norm constraint. Recently, it has been
shown [5] that the constrained EE optimization can
be formulated in a mixed least squares (LS)-total least
squares framework. When both input and output are
corrupted by white noises with known power ratio, the
Koopmans-Levin (KL) method [6] can provide unbiased
system parameter estimates via finding the eigenvector
corresponding to the minimum eigenvalue of the sample
covariance matrix determined from the noisy measure-
ments. It is also possible to realize the KL method
employing the measurements directly and the solution
is solved by singular value decomposition (SVD) [T7].
However, all the above schemes utilize LS optimization
and thus they generally cannot produce optimum esti-
mation performance. In this paper, we will focus on

developing a constrained weighted least squares (WLS)
estimator based on [4] for ITR system identification in
noisy input and/or output, which expects to outperform
the LS counterpart.

The rest of the paper is organized as follows. In Sec-
tion 2, a EE-based impulse response estimation algo-
rithm is devised via minimizing a WLS cost function
subject to a generalized unit-norm constraint. An it-
erative procedure is suggested to determine the opti-
mum weighting matrix and it can be considered as the
WLS version of [7]. Simulation results are presented in
Section 3 to evaluate the proposed algorithm by com-
paring with different benchmarks, namely, the KL, OE
[2], prediction-error (PE) [2] methods as well as the
asymptotic Cramér-Rao lower bound (CRLB) for infi-
nite measurements [8]. Finally, conclusions are drawn
in Section 4.

2 Algorithm Development
Let the unknown ITR, system be

B(z)
H = 1
(2) a0 (1)
where
A(z) = ag + Zlel ayz”t
B(z) = = Yisgbiz™!
with ag = 1. We assume that the orders of the de-

nominator and numerator polynomials are known, and
without loss of generality, they have identical values of
L. The observed system input and output are

Tp = Sk +my
(2)

rg =dy+ng, k=0,1,---N—-1

where s; and di denote the noise-free input and out-
put, respectively, while m; and nj represent the in-
put and output measurement noise which are indepen-
dent of s;. It 1s assumed that m; and nj are uncorre-
lated white processes with unknown variances o2, and
o2 respectively, but the ratio of the noise powers, say,
a? = 02 /o2, is available. Given N samples of z; and
r, the task is to find ¢; and b;, [ =0,1,---, L.
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In the EE formulation, the error function e is com-
puted from

L

L
e = Zdlrk—l —+ Z bk (3)
=0

=0

where {a;} and {b;} are the estimates of {a;} and {b;}
up to a scalar since ag i1s not fixed to be unity. The
corresponding LS cost function is then

Jp)=eTe=p"YTYp (4)
where
e=[en_1,encz, - ep]”
N-1 N—-L-1 ZIN-1 TN-L-1
TN-2 N—-L-2 IN-2 TN—-L-2
Y =
rr To Xy, o
and
p=lag,ar,---ar, bo, by, br]"

It is easy to show that the expected value of J(p) is
E{J(p)} = (Sp)"sp+p"E{Q"Q}p
= p'S"Sp+ (N - L)p" Bpoy,  (5)
where

¥ = diag(a?,---,a” 1,---,1

——_———’
L+l L+l
and
dn_1 dyv_p—1 snN-1 SN—L-1
dn_2 dnv_p—2 SN-2 SN—L-2
S =
dL do Sr, . S0

is the signal component of Y and Q represents the noise
component such that Y = S 4+ Q. We observe that
when {&;} and {b;} equal the true system parameters,
then Sp 1s a zero vector. However, the minimum of
E{J(p)} will not correspond to the desired {a;} and
{b;} in the presence of input and/or output noise be-
cause the second term of (5) also contains the param-
eter estimates. Extending the idea of the unit-norm
constraint approach [4] to noisy input-output systems,

unbiased TR system identification can be achieved via
minimizing E{J(5)} subject to

pEp=1 (6)

which is a generalized unit-norm constraint and we re-
fer this scheme as the unit-norm LS method. Using the
technique of Lagrange multipliers, the constrained opti-
mization problem can be solved by computing the gen-
eralized eigenvector corresponding to the smallest gen-
eralized eigenvalue of the pair (YZY,X). In fact, the
unit-norm LS algorithm is identical to the KL, method
[7] and the only difference is that the former uses eigen-
value decomposition while the latter employs SVD.

Nevertheless, we do not expect that the unit-norm
LS method will produce optimum parameter estimates
because of its LS realization. A straightforward im-
provement to it is to add a symmetric positive definite
matrix, say, W, to the LS cost function. An optimal
choice of W is the Markov estimate [2]:

W= (Ble ')yt 7
where
€=[enot,ena, - er)t
with
L L
€ = Z ang—; + Z bymy_y
=0 =0

Since {a;} and {b;} as well as the noise powers are un-
known, practically we should substitute the system pa-
rameters with p in W and then multiplying it by o2,
so that the resultant matrix is characterized by 6 and
a? only. An iterative procedure for the weighting ma-
trix computation will be presented shortly. Now we
first review the constraint of (6) as the cost function is
modified as

Ju(p) =" We=p"Y'WYp (8)

From (8), it can be deduced that for WLS minimization,
the constraint will become:

prrp=1 9)

where ¥ = E{QT"WQ}. The matrix Y can be ex-
pressed as

[ a?Dy o?Dy, o .- 0
a2D1 OézDL_l 0 0
oDy -+ a’Dy o - 0

0 0 Dy - Dp
0 0 Dy - Dp_y
L 0 0 Dy Dy 1
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where D; = S Y Wiy, 5 = 0,1,---, L, with
[W]; ; represents the (7, j)-entry of W. It is observed
that (4) and (6) are only a special case of (8) and (9)
when W is the identity matrix and we refer the general-
ized one as the unit-norm WLS estimator. In practice,
we suggest the following procedure for the constrained

WLS-based system identification:

(i) Find initial estimates of the system parameters by
computing the generalized eigenvector correspond-
ing to the minimum generalized eigenvalue of the
pair (YTY,3).

(i1) Use the estimated § to construct W as well as Y.

(iii) Compute the generalized eigenvector correspond-
ing to the minimum generalized eigenvalue of the
pair (YWY, T).

(iv) Repeat Steps (ii)-(iii) until parameter convergence.

It is noteworthy that when there is either input or out-
put noise only, ¥ will not be of full rank. However, the
proposed algorithm can be easily modified to operate
in these scenarios via some matrix partitioning work.

3 Numerical Examples

Simulation results had been performed to evaluate the
performance of the developed approach for estimating
ITR system parameters using noisy measurements. The
scenarios of noisy output only and noisy input-output
were considered. In the former case, comparison was
made with the OE and PE methods [2] while for the lat-
ter, we contrasted the estimator performance with the
KL method [7] and asymptotic CRLB for white Gaus-
sian disturbance [8]. The noise-free input s; was a white
Gaussian process of unity power and the unknown sys-
tem was of second order with parameters as follows:
a; = —1, as = 0.5 and by = —1. The measurement
noise my, and ny were also independent white Gaussian
random variables. The sample size was N = 200 and
three iterations were used in the estimation procedure.
All results provided were averages of 100 independent
runs.

Figures 1 to 3 show the mean square errors (MSEs)
for a1, as and by, respectively, of the unit-norm LS,
unit-norm WLS, OF and PE methods in estimating the
output-noise-only system at noise power ranged from
—30dB to 20dB. As expected, the unit-norm LS was
inferior to the other three estimators which had very
similar performance before the threshold region. Since
for ITR, system identification with only output noise, it
is well known that [2] the PE method is optimum for
general noise models while the OE method is optimum
for white noise, we concluded that the proposed WLS

estimator also produced optimum system parameter es-
timates for sufficiently small noise levels.

The above test was repeated for the noisy input-
output system with o? = 20 and the corresponding re-
sults are shown in Figures 4 to 6. It is seen that the
unit-norm LS and KL methods performed very similar
and were suboptimum. While the unit-norm WLS esti-
mator was again optimum as it agreed with the asymp-
totic CRLB for sufficiently high signal-to-noise ratios,
although the MSEs could below the bound because N
was not chosen large enough.

4 Conclusions

The relationship between the unit-norm constraint ap-
proach and Koopmans-Levin method for impulse re-
sponse estimation has been illustrated via the devel-
opment of a unit-norm least squares algorithm. This
algorithm is then improved by using the technique of
weighted least squares (WLS), and the resultant pa-
rameter estimates are obtained via minimization of a
WLS cost function subject to a generalized unit-norm
constraint where the weighting matrix is the Markov es-
timate. The optimality of the proposed WLS estimator
for output-noise-only and noisy input-output systems
is demonstrated by contrasting with the corresponding
benchmarks via computer simulations.
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