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ABSTRACT 

We propose a method of automatic hardware imple-
mentation of a decision rule based on the Adaboost algo-
rithm. We review the principles of the classification 
method and we evaluate its hardware implementation 
cost in term of FPGA’s slice, using different weak classi-
fiers based on the general concept of hyperrectangle. We 
show how to combine the weak classifiers in order to 
find an efficient trade-off between classification per-
formances and hardware implementation cost. We pre-
sent results obtained using examples coming from UCI 
databases.  

1 INTRODUCTION 
In this paper, we propose a method of automatic hard-
ware implementation of a particular decision rule. This 
paper focuses mainly on high speed decisions (approxi-
mately 5 to 10 ns per decision) which can be useful for 
hi-resolution image segmentation or pattern recognition 
tasks in very large image databases. Our work is de-
signed in order to be easily integrated in a System-On-
Chip, which can perform the full process: acquisition, 
feature extraction and classification. This paper focuses 
on the last part of this process. Our method is based on 
the well known Adaboost algorithm, which decision 
consists in a simple summation of signed numbers [1, 2]. 
The limited number of operations to be performed allows 
us to choose the fastest implementation, a fully parallel 
one. Moreover, the regular structure of the function can 
be automatically generated using a hardware description 
language such as VHDL, and thus can be implemented 
efficiently in FPGA. 

Many implementations of particular classifiers have 
been proposed, mainly based on neural networks [3, 4, 
5]. However, the implementation of a classifier is not of-
ten optimum in terms of silicon area and performances, 
because of the general structure of the chosen algorithm. 
Moreover Adaboost is a powerful machine learning 
method that can be applied directly, without any modifi-
cation to generate a classifier implementable in hard-
ware, and a complexity/performance trade-off is natural 
in the framework: Adaboost learning constructs a set of 
classifier with increasing complexity gradually and bet-
ter performance (lower crossvalidated error). 
In order to follow real-time processing and cost con-
straint, we have to minimise the test error e while mini-
mising the hardware implementation cost λ and maxi-

mise the decision speed. The maximum speed will be 
obtained using a full parallel implementation. The cost λ 
has been estimated considering FPGA as the hardware 
target. The advantage of these components is mainly 
their reconfigurability [6] [7]. Using reconfigurable ar-
chitecture, it is possible to integrate the constant values 
in the design of the decision function, optimising the 
number of cells used. We consider here the slice as the 
main elementary structure of the FPGA and the unit of λ. 
One component can contain a few thousand of these 
blocks.  

In the first part of this paper, we present the principle 
of the proposed method, reviewing the Adaboost algo-
rithm and defining a family of weak classifiers suitable 
to hardware implementation, based on the general con-
cept of hyperrectangle. We describe how it is possible to 
estimate the full parallel hardware implementation cost 
in terms of slices. In the second part, we present the al-
gorithm allowing finding a hyperrectangle minimizing 
the classification error and allowing finding a good 
trade-off between performance and hardware implemen-
tation cost which we estimated. In the third part, results 
obtained on real databases coming from UCI repository 
are presented. 

2 PROPOSED METHOD 

2.1 Review of Adaboost 

The basic idea introduced by Schapire and Freund [1, 2] 
is that a combination of single rules or “weak classifiers” 
gives a “strong classifier”. Each sample is defined by a 
feature vector x=(x1, x2, ..., xD)T in an D dimensional 
space and its corresponding class :  
( ) { }= ∈ − +1, 1C yx in the binary case. 

The learning set S of p samples has been defined as: 

( ) ( ) ( ){ }= 1 1 2 2S , , , , ..., ,p py y yx x x . 

Each sample is weighted such as after each iteration of 
the process (which consists in finding the best weak 
classifier as possible), the weights wi of the misclassified 
samples are increased, and the weights of the well classi-
fied sample are decreased. The final class y is given by: 

( ) ( )α
=

=  
 
 
∑

1

T

t t
t

y sgn hx x  

Where both α t  and th  are to be learned by the following 
boosting procedure. 
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a. Input ( ) ( ) ( ){ }= 1 1 2 2S , , , , ..., ,p py y yx x x , number of 

iteration T and initialize 
( ) 1 /tw p
i

= for all i=1, …, p 

b. Do for t=1, …, T 
b.1 Train classifier with respect to the weighted samples set 

{ }( )S, td  and obtain hypothesis { }→ − +: 1, 1th x  

b.2 Compute the weighted error ε t  of 

th : ( )( )ε
=

= ≠∑ ( )

1

I
p

t
t i i t i

i

d y h x  

b.3 Compute the coefficient 
11

log
2

t
t

t

ε
α

ε

−
=
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b.4 Update the weights ( ){ }
( )

( 1) exp
t

t i
i t i t i

t

d
d y h

Z
α+ = − x  

Where Zt is a normalization constant: 2 (1 )t t tZ ε ε= −  

c. Stop if ε = 0t  or ε ≥
1
2t  and set T=t-1 

d. Output : ( ) ( )
1

T

t t
t

y sgn hα
=

=  
 
 
∑x x  

 

2.2 Choice of a good weak classifier 

A weak classifier suitable to parallel hardware imple-
mentation is necessary. In term of slices, the hardware 
cost can be expressed as follow: 

( 1) add TTλ λ λ= − +  

where λadd is the cost of an adder (which will be consid-

ered as a constant here), and Tλ is the cost of the parallel 
implementation of the set of the weak classifiers : 

1
T t

T

t
λ λ

=

=∑  

whereλt is the cost of the weak classifier th associated to 
the multiplexers (see Fig. 1). 
Single parallel axis threshold is often used in the litera-
ture. However, the number of iterations needed by a so 
simple classifier is often important, increasing the hard-
ware cost (which depends on the number of additions to 
be performed in parallel). To increase the complexity of 
the weak classifier allows converging faster, and then 
minimizing the number of additions, but will also in-
crease the second member of the equation. We have then 
to determine a trade-off between the complexity of 
th and the hardware cost.  

It has been demonstrated in the literature that decision 
trees based on hyperrectangles (or union of boxes) in-
stead of single threshold give better results [11]. More-
over, the decision function associated with a hyperrec-
tangle can be easily implemented in parallel (Fig. 2).  
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Fig. 1 Parallel implementation of Adaboost 
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Fig. 2 Parallel implementation of th  

However, there is no algorithm in the complexity of D 
allowing finding the best hyperrectangle, i.e. minimizing 
the learning error. We will use a suboptimum algorithm 
to find it. 

We defined the hyperrectangle as a set H of 2D 
thresholds and a class Hy  

{ }1 1 2 2, , , , ..., , ,l u l u l u

D D HH yθ θ θ θ θ θ=  

Where θ l
k  and θ

u
k  are respectively the lower and up-

per limits of a given interval in the kth dimension. The 
decision function is  

( ) ( )( ) ( )u

1

 ,  otherwise
D

l

H H d d d d H H
d

h hy x x yθ θ
=

= = −⇔ > <∏x x  

This expression, where product is the logical operator, 
can be simplified if some of these limits are rejected to 
the infinite (or 0 and 255 in case of byte based imple-
mentation). Comparisons are not necessary in this case 
since the result will be always true. It is particularly im-
portant for minimising the final number of used slices. 
Two particular cases have to be considered: 
The single threshold: { },d yθ ΓΓ =   

Where dθ is a single threshold, { }1, ...,d D∈ , and the 
decision function is: 

( ) ( ), otherwise d dh hy x yθΓ Γ Γ Γ= = −⇔ <x x  

The single interval: { }, ,l u

d d yθ θ ∆∆ =  
Where the decision function is: 
( ) ( ) ( ) ( )and  ,  otherwise l u

d d d dh hy x x yθ θ∆ ∆ ∆ ∆= = −⇔ > <x x  
In these two particular cases, it is easy to find the op-

timum hyperrectangle, because each feature is consid-
ered independently form the others. In the general case, 
one has to follow a particular heuristic given a subopti-
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mum hyperrectangle. A family of such classifiers have 
been defined, based on the NGE algorithm described by 
Salzberg [12] whose performance was compared to the 
Knn method by Wettschereck and Dietterich [13]. This 
method divides the attribute space into a set of hyperrec-
tangles based on samples. The performance of our own 
implementation was studied in [14]. We will review the 
principle of the hyperrectangle determination in the next 
paragraph. 

3 HYPERRECTANGLE 
DETEMINATION 

3.1 Review of Hyperrectangle based method 

The core of the strategy is the hyperrectangles set H 
determination from a set of sample S. 

During the first step, one hyperrectangle H(x) is build 
for each sample x of the learning set S as follows: each 
part Qk (see Fig. 3) defines the area where for all sample 

( )∞∈ = −, d ,k k kQ x uu x u  with: 

( )∞
=

= −
1,...,

, max k k
k D

d u vu v  

We determine z as the nearest neighbour belonging to 
a different class in each part Qk. If dk is the distance be-
tween x and z in a given Qk, the limit of the hyperrectan-
gle is computed as df = dkR. The parameter R should be 
less or equal to 0.5. This constraint ensures that the hy-
perrectangle cannot contain any sample of opposite 
classes. 

xj 

x iQ+

iQ−

jQ+

jQ−

dp 

df

Bound determination 
 

Fig. 3 Hyperrectangle computation 
 
During the second step, hyperrectangles of a given 

class are merged together in order to eliminate redun-
dancy (hyperrectangles which are inside of other hyper-
rectangle of the same class). We obtain a set H of hyper-
rectangles  : 

{ }1 2H , ...,, qH H H=  
We evaluated the performance of this algorithm in vari-
ous cases, using theoretical distributions as well as real 
sampling [8]. We compared the performance with neural 
networks, the Knn method and a Parzen’s kernel based 
method [10]. It clearly appears that the algorithm per-
forms poorly when the inter-class distances are too 
small: an important number of hyperrectangles are cre-

ated in the overlap area, slowing down the decision or 
increasing the implementation cost. However, it is possi-
ble to use the hyperrectangle generated as a step of the 
Adaboost process, selecting the best one in terms of clas-
sification error. 

3.2 Boosting general Hyperrectangle 

From H we have to build one hyperrectangle minimis-
ing the weighted error. To obtain this result, we merge 
hyperrectangles following a one-to-one strategy, thus 
building q’=q(q-1) new hyperrectangles. We keep Hopt 
the hyperrectangle giving the smallest weighted error. 

3.3 Estimation of the hyperrectangle hardware 
implementation cost  

It is possible to estimate the hardware implementation 
cost of ht, taking into account that we can code the con-
stant values of the decision function into the final archi-
tecture, using the advantage of FPGA based reconfigur-
able computing. Indeed, the binary result LB of the 
comparison of the variable byte A and the constant byte 
B is a function FB of the bits of A:  

LB=FB(A7,A6,...,A0) 
In the worst case, the particular structure of LB can be 
stored in two cascaded Look Up Tables (LUT) of 16 bits 
each (one slice). We have coded a tool which automati-
cally generates a VHDL description of a decision func-
tion given the result of a training step (i.e. given the hy-
perrectangles limits). We have then used a standard 
synthesizer tool for the final implementation in FPGA. 
In the case of single threshold, 1tλ = . In the case of in-

terval, 2tλ ≤ . In the case of general hyperrectangle, the 
decision rule requires in the worst case 2 comparators 
per hyperrectangle and per feature: 2t Dλ ≤ . Consider-
ing that some limits of the general hyperrectangle can be 
rejected to the “infinit”, the general cost can be ex-
pressed as follows: 

         ( 1)
add

T kTλ λ≤ − + , 2k D≤  
where k is the number of lower limits of hyperrectan-

gles which are greater than 0 plus the number of upper 
limits which are lower than 1 (or 255 in the byte case). 

4 RESULTS 
We applied our method in different cases, based on 

real databases coming from UCI repository. These ex-
ample are more significant in terms of hardware imple-
mentation, since they are performed in high dimensional 
spaces (until D=64, this can be seen as a reasonable limit 
for a full parallel implementation). 

For each example and, we give also the result of a de-
cision based on SVM developed by Vladimir Vapnik  [8], 
which is known as one of the best classifier, and which 
can be compared with Adaboost on the theoretical point 
of view. At the same time SVM can achieve good per-
formance when applied to real problems [15, 16, 17,18]. 
In order to compare the implementation cost of the two 
methods, we evaluated the hardware implementation 
cost of SVM as: 
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72(3 1) 8λ − +svm D Ns  
Where Ns is the total number of “Support Vectors” 

determined during the training step. We used here a RBF 
based kernel, using distance L1. While the decision func-
tion seems to be similar to the Adaboost one’s, the cost 
is here mainly higher because of multiplications, even if 
the exponential function can be stored in a particular 
look up table (LUT) to avoid computation, the kernel 
product K requires some multiplications and additions; 
the final decision function requires at least one 
multiplication and one addition per support vector 

( ) ( )α
=

= ⋅ + 
 
 
∑

1

C Sgn ,
Ns

i i i
i

y K bx s x  

Results are summarised in the Table 1. The number of 
classes c is from 2 to 10. For each case, we give the re-
sult of classification using a RBF kernel based SVM as a 
reference. One can see that the direct hardware cost of 
this classifier is not realistic here. Considering the differ-
ent results of our Adaboost implementation, it appears 
clearly that the combination of the three types of weak 
classifiers gives the better results. The optdigit and the 
pendigit cases can be solved using from 2 to 5 compo-
nent of the Virtex family, for example, while all the 
other cases can be implemented in a single low cost chip.  
Moreover, the classification error of the Adaboost based 
classifier is very close to the SVM one. 

Table 1 Results on real databases 
Database D c SVM (RBF) Threshold Interval Hyperrectangle 

   e (%) λSVM  e (%) λ e (%) λ e (%) λ 

optdigit 64 10 1.15 20215448 2.605 5292.5 2.735 5414 2.59 4392.5

pendigit 16 10 0.625 2270672 20.875 3435 2.01 5481.5 1.415 3405.5

Ionosphere 34 2 7.95 465416 8.23 126 6.81 149.5 7.095 119.5

IMAGE 17 7 3.02 1699208 12.91 568.5 7.655 697 4.015 973.5

WINE 13 3 4.44 87560 3.33 98 5.525 98 6.11 18

 
 

5 CONCLUSION 
We have developed a method allowing automatic gen-
eration of hardware implantation of a particular decision 
rule based on the Adaboost algorithm, which can be ap-
plied in many pattern recognition tasks, such as pixel 
wise image segmentation, character recognition, etc. 

We experimentally validated the method on real 
cases, coming from standard datasets. We demonstrated 
that it is possible to find a good trade off between the 
hardware implementation cost and the classification er-
ror. The final error of this classifier if often very close to 
the SVM error, which can be seen as a good reference. 
Moreover, the method is really easy to use, since the 
only parameters to tune are the choice of the weak classi-
fier and the R value of the hyperrectangle based method. 
We are currently finalizing a development tool which 
will allows developing the whole implementation proc-
ess, from the learning set definition to FPGA based im-
plementation using automatic VHDL generation. Our fu-
ture work will be the integration of this method as a 
standard IP generation tool for classification. 
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