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ABSTRACT
In previous work the authors have presented initial results
from a new method of linear vector filtering applied to colour
images. The method depends on resolution of colour pixel
vectors into directions parallel and perpendicular to a chosen
colour, followed by application of separate filters to the re-
solved image components in order to filter the chosen colour
only (for example with a low-pass filter). In this paper we
review this scheme and then present a new and detailed anal-
ysis of the limitations of the scheme as currently defined.
Understanding of these limitations reveals for the first time
where progress must be made with new linear operations be-
fore linear vector filters can be fully realized for practical
use.

1. INTRODUCTION

In our previous work on colour image filtering [1] we have
shown that it is possible to implement linear vector filters,
with application to the processing of colour images. For ex-
ample, it has been shown that a colour image may be selec-
tively low-pass filtered so that only pixels of a certain colour
of interest (COI) are filtered, leaving other pixels largely un-
touched. In the past this has been done by first defining pixels
of interest in the image with an outline mask, or by colour
thresholding, and then filtering only the selected pixels. In
our work, all the pixels in the image are filtered (by convolu-
tion), but the filtering itself is inherently selective.

Filters of this type may be designed mathematically by
resolving all the pixels within a colour image into directions
in colour space using a standard parallel/perpendicular vector
resolution, then applying a scalar filter to only one of the sep-
arated image components, and finally adding the two images
back together to obtain the filtered result. In [1] we showed
that the implementation of the filter need not actually include
the parallel/perpendicular separation, because it is possible to
define this separation algebraically, and then merge the sep-
aration step into the convolutions. This means that the filter
may be implemented in the Fourier domain (using a suitably
defined hypercomplex Fourier transform) such as those based
on quaternions1 which two of the authors have worked upon
[2, 3]). The advantage of implementation in the Fourier do-
main is faster computation for large mask sizes, just as with
real or complex convolution. Vector filtering based on hy-
percomplex convolution was first reported in [4] and in ex-
panded form in [5]. For completeness we reproduce here the
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1A brief summary of quaternions is included in Appendix A.

definition of hypercomplex convolution:

g(n,m) =
X

∑
x=−X

Y

∑
y=−Y

hL(x,y) f (n− x,m− y)hR(x,y) (1)

where g(n,m) is the filtered image, and f (x,y) is the orig-
inal image, both of dimension N ×M; hL(x,y) and hR(x,y)
are the left and right masks respectively, both of dimension
(2X + 1)× (2Y + 1). The images are represented by pure
quaternion pixels and there are two masks with quaternion
coefficients, one on the left of the image and one on the right.
Quaternion multiplication is not commutative in general, and
the left and right coefficients permit masks to be defined that
implement linear operations on the pixel vectors, such as ro-
tation. These operations are implemented numerically us-
ing quaternion arithmetic, and are amenable to algebraic ma-
nipulation using quaternion algebra. The convolution pro-
cess is standard in image processing, and the only difference
with hypercomplex convolution is that the arithmetic is hy-
percomplex and there are coefficients on the left and right of
the pixel values.

In the next section we review briefly the work presented
in [1] and then explain its limitations. We also present colour
ramp images in which all the pixels are co-directional in
colour space, but vary in magnitude. In section 3 we present
some analysis of the filtering scheme which explains the lim-
itations and suggests some approaches to obtaining better
colour-selectivity.

2. PREVIOUS WORK

Figure 2 shows the derivation of the filtering scheme pre-
sented in our previous work [1]. We first choose a colour of
interest (COI). The intention is to filter pixels in the image
which are close to the COI, in some sense. For example, we
might apply a low-pass filter to pixels which are close to the
COI, so that regions in the image with colours near to the
COI are smoothed, while the rest of the image is left largely
untouched.

We have chosen to work in an offset RGB colour space in
which the origin is at the centre of the RGB cube, that is the
origin is at mid-grey with normalized RGB values (½, ½, ½),
rather than at black with normalized RGB values (0,0,0). This
means that all pixel values are vectors directed away from
mid-grey. To convert an image from standard normalized
RGB values to this ‘offset’ RGB space, we simply have to sub-
tract a constant (or DC) value (½, ½, ½) from all the pixels.
A full description and discussion of this grey-centered RGB
colour space appears in [6]. It should be noted that subtract-
ing an offset from all the pixel values is a non-linear opera-
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Figure 1: Example colour ramp images. Top to bot-
tom: greyscale, red/cyan, green/magenta, blue/yellow,
pink/turquoise. Vector directions: (1,1,1), (1,-1,-1), (-1,1,-
1), (-1,-1,1), (1,0,0), respectively

tion. It corresponds in signal processing to conversion from
unipolar samples to bipolar samples.

Figure 1 shows several colour ramp images. All the pix-
els in a given colour ramp image are aligned in one direction
in colour space. The magnitude of the pixel vector varies
uniformly from left to right along the image, passing through
zero at the centre of the image (where the colour is always
mid-grey). Thus the colours to the left of the centre of the im-
age are opponent colours to those on the right. In terms of the
perceptual quantities hue, saturation and intensity, these im-
ages have constant hue from centre to left edge and from cen-
tre to right edge (and the two hues are opponent hues, with a
difference of 180°); saturation varies from a maximum at the
left edge to zero at the centre and back to a maximum at the
right edge; intensity varies monotonically from left to right
edge. Given this representation of an image (which is only
slightly different from the standard RGB representation), we
can resolve an image into two images using the usual concept
of resolving a vector into a chosen direction and a perpendic-
ular plane. This is done using quaternion arithmetic as shown
in Appendix A. The chosen direction is defined by our COI
relative to mid-grey. All pixels in the image are resolved into
a component parallel to the COI, and a component perpen-
dicular to the COI. Obviously, a pixel with a value which is
exactly that of the COI will have no component in the plane
perpendicular to the COI, and a pixel with a value which is
exactly perpendicular to the COI will have no component in
the direction of the COI. Other pixels will fall somewhere
in between these extremes. An obvious special intermediate
case is that of a pixel whose value subtends an angle of 45°
to the COI, since this will be resolved into equal components
in the direction of the COI, and in the plane perpendicular to
the COI.

The implementation of the filter consists of the sum of
two hypercomplex convolutions computed in parallel, and
the decomposition step shown in the figure is merged into
the hypercomplex multiplications. This is possible because
the parallel/perpendicular resolution can be expressed algre-
braically and this algebraic representation can then be com-
bined algebraically with the convolution coefficients. The
details were given in [1].

3. LIMITATIONS

The filtering scheme reviewed in the previous section suffers
from three limitations which were not previously understood,
and which have not been published in previous work. These
limitations are:
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Figure 2: Colour selective filtering scheme used in [1].

• The colour selectivity is limited. Discrimination between
colour vectors close to the COI and those at up to 45°
from the COI is limited. This is a fundamental problem
whose solution is required before more colour-specific
filters may be designed, and in what follows, we show
why the lack of discrimination occurs, and that a seem-
ingly obvious way to improve it does not in fact make
any difference.

• When the COI is close to the grey direction (roughly ‘lu-
minance’), the lack of sharp colour selectivity means that
luminance is also filtered, even in the case of pixels which
are not close to the COI. Geometrically, this is the same
limitation as in the previous point, although its perceptual
effect in the filtered image is different because the human
visual system has much greater acuity to luminance than
chrominance.

• The opponent colour to the COI is not separable from the
COI using a linear operation. (Opponent colour examples
are: black – white; red – cyan; green – magenta; blue –
yellow.) This is not an insoluble problem, because the
required non-linear operation is easy to implement, but
because the resulting filter includes a non-linear opera-
tion, it will not be possible to implement the entire filter
in the Fourier domain. A more accurate categorization
of a filter which included separation of the COI from its
opponent colour would be quasi-linear rather than non-
linear.

All three of these limitations are discussed in depth below.

3.1 Colour selectivity

The limited colour selectivity achieved by resolving pixel
vectors into the direction of the COI and the plane perpen-
dicular to the COI is very simply explained. When a vector p
is resolved into the COI direction (specified by a unit vector
u), the resolved vector is given by u(u · p), where · denotes
the ‘dot’ or scalar product. More specifically, the resolved
vector is given by u|p|cosθ where θ is the angle between u
and p. Since the magnitude of the resolved vector depends
on the cosine of the angle between the vector p and the COI
direction, there is limited ‘rolloff’ with angle, since the co-
sine function changes only slowly with angle until the angle
exceeds 45°. (We use the term ‘rolloff’ here by analogy with
the attenuation of a linear filter, except that what we are try-
ing to express is the way that the selectivity of the filter varies
as the pixel vectors increase in angle from the COI direction.
What we need is a sharper rolloff with angle than we obtain
with the scheme reviewed in this paper.)

It might seem that a solution to this problem could be
obtained by resolving the pixels so that the COI direction is
in the plane perpendicular to the direction of the unit vector
u, and then resolving the pixels in the perpendicular plane

586



-
�

��
⊥

‖

-
�

��
⊥

‖

-

- F

6

���
-
?

Figure 3: Colour selective filtering scheme with two decom-
positions and filtering of the perpendicular separated image
component.
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Figure 4: Vector p resolved into the direction of a colour
of interest (COI) by choosing, left: the parallel direction to
coincide with COI; right: the perpendicular direction to co-
incide with COI. θ is the angle between p and the parallel
direction.

using a second direction perpendicular to both the COI and
to u. Figure 3 illustrates a filter based on this scheme. The
attraction of this scheme might be thought to be that the com-
ponents of the pixel vectors resolved into the perpendicular
plane are determined by the sine function of the angle θ , thus
giving exactly the improved selectivity desired. However, it
turns out that this is a fallacy and Figure 4 shows why: it
makes no difference whether the COI is in the parallel di-
rection or the perpendicular plane – in both cases the angle
between the vector p and the COI is the same and it is the
cosine of this angle that determines the magnitude of the re-
solved vector. We include this point to make clear that the
problem is a non-trivial one, despite its apparent simplicity.

3.2 Luminance rejection

The second limitation discussed above is closely related to
that discussed in the previous subsection. The problem is
that when a colour direction includes a significant luminance
component, the weak colour selectivity achieved using vector
decomposition means that many pixels in the separated im-
age have a luminance component even though their chromi-
nance in the chosen COI is minimal. This can be seen in Fig-
ure 5 which is a separation of the colour image ‘lena’ such
that the COI is in the direction of the colour of the feathers
hanging from Lena’s hat. It can be seen that although the
feathers have been separated from the other colours in the
image, we also have an almost greyscale image for all other
areas of the image, and if we filter this separated image with
a low-pass filter (intending to ‘soften’ the feathers), we will

Figure 5: Separation of the lena image in the colour direc-
tion corresponding to the blue feathers, showing strong lu-
minance element in the separated image, and also opponent
colour (the yellow areas).

also blur the rest of the image noticeably because of the lumi-
nance element of the remaining pixels in the separated image.

3.3 Opponent colour separation

The third problem noted above is that of opponent colours.
Ideally, it would be desirable to be able to separate out a cho-
sen colour (defined by a COI direction) and filter just pixels
of this colour. However, if we use mid-grey as the origin of
our colour space (and there are good reasons for doing so),
we cannot separate the COI from its opponent colour (vectors
in the opposite direction away from mid-grey) without using
a non-linear operation. Figure 5 is an example of the prob-
lem and clearly shows the yellow colour which is opponent
to the colour of the feathers (the COI).

The required operation is simple enough, and corre-
sponds to extracting the sign of each pixel vector (analogous
to extracting the sign bit from a signed integer sample in digi-
tal signal processing). However, there appears to be no linear
algebraic way to perform this extraction and until this prob-
lem is solved in a linear algebraic fashion this step cannot be
combined into other linear steps as we have been able to do
with the parallel/perpendicular separation.

4. CONCLUSION

The problem of colour-dependent linear vector image filter-
ing has been shown to be non-trivial. The paper has pre-
sented a new analysis of the difficulty of achieving colour-
specificity using resolution of pixel vectors into the colour
space direction of a colour of interest, and has also shown
that problems exist for colour directions close to the lumi-
nance or grey axis of colour space, because in the case of
these colours it is difficult to separate the colour of interest
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from the luminance. Further work remains to be done, and
it is suggested that some form of colour vector amplification
may be the solution to the problem. We have presented a non-
linear scheme for vector amplification in [7], but we seek, as
in this paper, a linear solution.

The alternative is to resort to filtering schemes which
rely on hue, saturation, intensity; or use a chromi-
nance/luminance colour space, as in [8], for example. Such
schemes are non-linear, or at best quasi-linear, and do not
permit implementation in the Fourier domain, nor do they
permit the application of the very wide body of knowledge
developed in the field of linear systems. It is a major motiva-
tion of our work that this body of knowledge may be gener-
alized to linear vector filtering, and thus lead to a systematic
exploration of filtering and processing possibilities, which
has not been achieved with non-linear filtering schemes.

The discussion in this paper presents our work so far on
the problem of devising and designing linear vector filters for
colour images, and although we have not yet found a good
linear solution to the problem of colour selectivity, we have
made some progress with understanding the problem itself.

A. QUATERNIONS

The quaternions (also referred to in this paper as hyper-
complex numbers2) were discovered by Hamilton in 1843.
They combine by the normal rules of algebra with the ex-
ception that multiplication is not commutative. A quater-
nion has four components, one real and three imaginary. The
usual notation, extended from that of the complex numbers
is q = w + xi + y j + zk where w, x, y and z are real, and i, j
and k are complex operators which obey the following rules:

i2 = j2 = k2 = i jk =−1

i j = k jk = i ki = j
ji = −k k j = −i ik = − j

The conjugate of q (denoted here by an overbar) is q = w−
xi− y j− zk and its modulus is |q|=

√
w2 + x2 + y2 + z2

A quaternion with zero real part is called a pure quater-
nion, and a quaternion with unit modulus is called a unit
quaternion. The imaginary part of a quaternion has three
components and may be associated with a 3-space vector.
For this reason, it is sometimes useful to consider the quater-
nion as composed of a vector part and a scalar part, thus:
q = S(q)+V (q), where the scalar part, S(q), is the real part
(w in our notation above), and the vector part is a composite
of the three imaginary components, V (q) = xi+ y j + zk.

A pure quaternion, or vector, ν may be decomposed
about a direction specified by a vector/pure quaternion µ into
components ν‖ and ν⊥ such that ν = ν‖ + ν⊥ and ν⊥ ⊥ µ

and ν‖ ‖ µ . The parallel (ν‖) and perpendicular (ν⊥) com-
ponent of each pixel is given by [9]:

ν‖ =
1
2
(ν −µνµ) ν⊥ =

1
2
(ν + µνµ) (2)

2Strictly, the term hypercomplex number refers to a more general case of
n components, n ≥ 2, so that, while quaternions are hypercomplex, not all
hypercomplex numbers are quaternions.
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