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ABSTRACT

We propose and evaluate three new perceptual audio hash
functions. These hash functions are based on a concise
description of the time-frequency characteristics.  This
information can be extracted from the time series of frame-
by-frame fundamental period or from the singular value
decomposition of the mel frequency cepstral parameters.
Experiments show that the proposed perceptual hash
functions are both robust and unique.

1. INTRODUCTION

In this study we develop algorithms for summarizing a long
audio signal into a concise signature sequence, which can
then be used to identify the original record. We want this
signature to be insensitive to non-malicious signal
manipulations such as mild compression, but otherwise be
sensitive to the content changes. This process is called
robust audio hashing and the output sequence is denoted in
the literature by alternate names, such as signature,
fingerprint or perceptual hash values of the input. The
mapping tool from audio input to the signature is called
perceptual hash function.

Hash functions are deployed in the area of cryptology, where
they are generally used to verifying the authenticity of data.
In the cryptographic context, hash functions are required to
be extremely fragile. In other words, any alteration of the
source data, be it even one bit flipping, causes a totally
different hash output. Instead, we are searching for robust
hashes, which should resist against those signal-processing
operations (filtering, compression or AD/DA conversion etc.)
that purportedly leave the content intact.

Robust hashing finds applications in database searching,
broadcast monitoring, tamper proofing, data content
authentication etc. For example, in database searching and
broadcast monitoring, instead of comparing the whole
sample set, hash sequence would suffice to identify the
content. Another application example is in watermarking,
where a content-dependent signature, coupled with
ownership or authorship label is embedded in the document.
This type of watermarking is resistant, among other things, to
copy attack.

The two desiderata of the perceptual hash function are
robustness, and uniqueness. The uniqueness qualification
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implies that hash sequence is informative, that is, it should
reflect the content of the audio document in a unique way.
Such uniqueness is sometimes called randomness, so that any
two distinct audio documents result in different and
apparently random hash values. Consequently, the collision
probability, that is the probability that two perceptually
dissimilar inputs yield the same hash value, is minimized.
The robustness qualification implies that the audio input can
be subjected to certain non-malicious manipulations, such as
analog-to-digital (A/D) conversion, compression, sample
jitter, moderate clipping etc., and yet it should stay in
principle the same in face of these modifications. The line of
demarcation between what constitutes a non-malicious signal
processing operation and when a change in content should be
admitted depends upon the application.

There exists a number of perceptual audio hashing
algorithms in the literature. The algorithms in [1,2] are
exploiting the power spectrum of the signal and its statistical
properties, and are intended, respectively, for audio database
search and watermarking. The audio fingerprinting methods
discussed in [3-6] are intended for music, speech and silence
discrimination. They wuse principal component analysis
(PCA), mel-frequency cepstral coefficients (MFCC),
adaptive quantization and channel decoding to summarize
the source data.

We investigate novel audio features for signature extraction
and based on these, propose two perceptual audio hashing
algorithms. One of them operates in the time domain, and
uses the inherent periodicity of audio signals. The time
profile of the dominant frequency of the audio track
constitutes the discriminating information. The second one
uses the time-frequency landscape, as given by the frame-by-
frame MFCC coefficients and summarizes them via singular
value decomposition.

2. PERIODICITY-BASED PERCEPTUAL HASHES

Our departure point is that all audio signals, be it speech,
music or environmental sounds, have an inherent
periodicity. The profile of the dominant period in the course
of the audio record constitutes the signature of that signal.
We employ two different approaches to measure the
periodicity, which are estimation-based and correlation-
based techniques, as shown in Fig. 1.

The input audio signal is split into smaller frames, which are
in turn windowed by Hamming window to reduce the
discontinuity effects. The number F of such frames is
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determined by the total length of the audio record and the
frame size, N. The frames are further preprocessed in order to
bring forward any periodicity that could be underlying the
signal. Thus frame signals are effectively band-pass filtered
by an LPC (linear predictive coding) filter to remove the
short-term dependencies. Furthermore, the time series of
estimated frame frequencies is smoothed as a postprocessing
operation. This smoothing is enacted via a 7-tap moving
average filter and is effective against desynchronization type
of distortion.
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Figure 1. Block diagram of periodicity estimators.

2.1 Parametric Estimation of the Periodicity

A least-square periodicity estimator (LSPE) is applied to
compute the period value of each frame. Irwin [8] had shown
that applying a LSPE directly to the signal gives optimal
periodicity detection. The LSPE calculation of a frame is as
follows [9]: Let

s(i) = s,(i) + n(i), for

i=12,., N

where s(7) is the input signal, s,(3) is the periodic component
of input signal, n(i) the nonperiodic component of input
signal, all within a frame of N samples. The periodic
component satisfies the relationship s,() = s,(i+kP,) for
integer k and for some period P,.

We now let p, be our estimate of P, and § (i) be the
estimated periodic signal component, with period p. An

estimate §, (i) is obtained from the input signal by:

S(l+hP)

§,(30) = Z 1<i<P,, P, <P <P
K,
where P and P delimit the range of P, and

K, - [(N —%0 } ,1 is the number of periods of §, (i) in the

analysis frame.

The objective of the least-squares method is to find the pitch
period 130 that minimizes the mean square error

N . .
Z [s(i) - §,()F ©Vver each analysis frame. Friedman [9]
i=1
. . . . .. N
shows that this is equivalent to maximizing 3 86)-
i=1
However this estimate is biased towards large values of A .

To overcome this bias, Friedman derives the normalized
periodicity measure:

L,(B) - 1,(B)
Zsz(i)_ll(Po)

i=1

R (P) =

where I (P)_zozs(l+hp) and
i=1 h=0 0
K, 2
5 {Z s(i+hP, )}
I,(P, )= > h=0 . For each frame,

R ( 130) is computed for values of 130 between P and P
The estimated period P,

R(B)-

is the argument that maximizes

2.2 Nonparametric Estimate of the Periodicity

A nonparametric periodicity estimate is obtained by peak
picking in the correlation sequence of the preprocessed audio
signal. In fact, the lag value of the first peak of the
autocorrelation of the LPC filtered signal is used as a
standard technique in speech analysis for pitch period
estimation. Similarly in our work, we compute the period for
each overlapped frame. The advantage of the correlation-
based method is that it requires quite less computation then
mean-square estimation method.

In the case where the audio signal does not possess an
explicit periodicity, as in the case of unvoiced speech or
silence, either estimation function generates a zero for that
frame. Thus if the confidence in periodicity g (P)) or the first

correlation peak falls below 0.5, then we declare that frame
as aperiodic.

3. SINGULAR VALUE DECOMPOSITION BASED
METHOD

In this algorithm, we extract a signature from the audio
signal by summarizing concisely the time course of its mel
frequency cepstral coefficients (MFCCs) and thus we
capture signal’s time-frequency characteristics in the
perceptual domain. The summarization is enacted by the
Singular Value Decomposition (SVD) of the MFCCs of the
signal, as organized in a matrix of features over frames.
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It is known that mel frequency cepstral coefficients are
useful short-term spectral-based features [7]. MFCC
coefficients are calculated by first obtaining the short-time
Fourier transform of the signal, then taking the logarithm of
the magnitude spectrum, scaling and smoothing it over Mel-
spaced frequency bins. The Mel-scale is based on a mapping
between actual frequency and perceived pitch in accordance
with the human auditory system’s nonlinear perception.
Finally, the MFCC features are obtained by applying some
transform on the Mel-spectral vectors into time domain, for
example, by the discrete cosine transform [7].

The MFCC features are organized in a FxM matrix form A,
where each row consists of the MFCC values for a frame,
and there are F rows, the number of frames into which the
signal has been segmented. This matrix expresses the whole
evolution landscape of the signal. A final summary of this
landscape is computed by the SVD of the frame MFCC
matrix.

The singular value decomposition, which is a factorization
and summarization technique, effectively reduces the FxM
MFCC-feature matrix into a much smaller invertible and
square matrix. Thus the given FxM matrix is decomposed as
A = UDV', where D is FxM matrix with only min(F,M)
diagonal elements, and U is an FxF orthogonal matrix and V
is an MxM orthogonal matrix. The diagonal entries of D are
called the singular values of the matrix A, the column space
of the matrix U are called the left singular vectors of the
matrix A, and the column space of the matrix V are called
the right singular vectors of the matrix A. In general, a few
singular values (first few components of the diagonal of the
matrix D) give a good summarization of the matrix A [10].

4. EXPERIMENTAL RESULTS

We have performed several experiments to evaluate on the
one hand the robustness and on the other hand the
uniqueness properties of the proposed perceptual hash
functions. As audio database we used 3-5 seconds long
utterances, which are sampled at 16kHz sampling rate. We
conducted also some preliminary experiments with music
files and obtained similar results.

Setting of the parameters: The setting of the feature
parameters was as follows. For the periodicity estimator, for
the 16kHz-sampled signal, P . and P were set,

respectively, to 40 and 320 samples, which means that the
admissible periods are between 50Hz to 400Hz. The frames,
taken to be 25 ms long, are overlapped by 50 percent. Frames
are preprocessed by first low-pass filtering them with a cutoff
frequency of 900 Hz and then through a 4-tap (Linear
Predictive Coding) LPC inverse filter [7]. The resulting hash
sequence consists of 79 samples/second.

For the SVD method, 13 cepstral features are obtained for
each frame. Therefore an Fx/3 feature matrix is obtained
from the input audio signal. We experimented with up to
three singular values in the UD product, and it was observed
that a single singular value was adequate. This is again the

basic trade-off between uniqueness, which improves with
more singular values, and robustness, which, conversely
improves with smaller number of eigenvalues. The signature
rate depends upon the number of frames and the number of
singular values chosen, which becomes 26, 52 and 78
samples per second respectively, for the choice of 1 to 3
eigenvalues.

Types of attacks: We programmed eleven types of attacks to
evaluate robustness performance. To this purpose, hash
value of the original record is compared with the hash value
of the attacked version. We measure their similarity with
normalized correlation coefficient.

These attacks and their acronyms are as follows: 1) Comp:
3:1 compression below 10dB; 2) Subs: subsampling down to
8khz; 3) Ups: upsampling to 44.1 kHz; 4) NsyA: Noise
addition, 20 dB SNR; 5) Dnsl: Denoise filtering after noise
addition; 6) Dns2: Denoise filtering of clear signal; 7) Pinc:
Raise pitch 1%; 8) Pdec: Lower pitch %1; 9) Tcomp: time
compress by %4; 10) Crp: random cropping, total amount
%38; 11) TelF: telephone filtering, 135-3700Hz.

Normalized correlation is used as similarity measure between
the hash sequence of the original sound file and that of the
test file. Obviously this score takes values in the (0,1) range.

Robustness tests: Table 1 summarizes the performance
results of the three hash extraction methods, where EPM,
CPM and SVDM refer to, respectively, estimation-based
periodicity measure, correlation-based periodicity measure
and singular value decomposition-based audio hashing
methods. The resulting signature lengths are 79, 79 and 26
samples/second, in order, for the EPM, CPM and SVDM
techniques. Notice that we could have made SVDM
commensurate with dimension 78, but the performance
difference between 1 and 3 eigenvalues was very small (less
than 1%), so that we used the more parsimonious
representation.

The EMP method performs slightly better then the CPM,
albeit at a higher computational cost. However, SVDM
produces the best results over considered attacks. The
minimum similarities under all attacks for hash sequences are
0.80, 0.85 and 0.95 for the CPM, EPM, and SVDM methods,
respectively.

Uniqueness tests: We tested whether the hash sequences can
be confounded in a large repertoire of audio files. Thus, for
each of the 200 utterances the hash value is computed and
compared with all the other ones. The utterances are 3-4
seconds long distinct sentences, uttered by the same speaker.
Notice that the use of only one speaker represents the worst
case for confounding as we forego inter-speaker variability.
Ideally, the similarity score between hashes should be zero.
However, it has been observed that the maximum similarity
(worst case) attained between hash values of different objects
is 0.51, 0.56 and 0.70, respectively, for the EPM, CPM and
SVDM methods. These experiments reveal that, in the case
of uniqueness, SVDM is slightly inferior.
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Table 1. Robustness tests against some unintentional types of attacks.

Method | NsyA | Dnsl | Dns2 | Pinc | Pdec | Comp | Subs | Ups TelF Crp | Tcomp
EPM 096 | 092 | 099 | 0.85 0.88 1 099 | 097 | 097 | 0.88 0.88
CPM 0.95 092 | 098 0.89 | 091 1 096 | 095 0.95 0.87 0.80

SVDM | 0.99 | 0.99 | 0.99 .98 .98 .99 099 | 099 | 095 0.97 0.99

The correlation scores are given in Fig. 2. The dispersion of
the right histogram shows the degree to which the hash
value is affected by the signal processing attacks. The left
histogram indicates the randomness of the hashes. In fact
hash values also depend upon the content. It can be stated
that, similarity between hash values of original object and its
distorted ones are well separated from that of distinct audio
records.

25
20

(3315 -

Figure 2. Histograms of the similarity measures of the hash
values extracted from distinct objects (solid lines), and
extracted from distorted versions of the same object (dashed
lines). The abscissa plots the similarity score, while the
ordinate shows the histogram value: (a) EPM, (b) CPM, (c)
SVDM.

More specifically, the minimum similarity between attacked
versions of the same object is always higher than the
maximum similarity between distinct objects for all
measures. In fact, this gap measures 0.85-0.51 for EPM,
0.80-0.56 for CPM and 0.95-0.70 for SVDM.

5. CONCLUSIONS AND FUTURE WORK

The three proposed perceptual audio hashing methods were
tested, on the one hand, to measure for robustness vis-a-vis
non-malicious signal processing attacks, and on the other
hand, to assess the uniqueness or randomness of the hash
when audio files with different content. All three proposed
perceptual hash sequences perform satisfactorily, with
SVDM being more robust. Our study continues in the
direction of quantization or/and an encoding schemes for the
hash sequences.
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