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ABSTRACT

Nowadays, new techniques of speech processing such as
speech recognition and speech synthesis use the glottal clo-
sure and opening instants. Recognition techniques use them
for the vocal folds description and for the classification of
speaker’s state or for speaker classification, and speech syn-
thesis techniques use them for the speech timbre.

In an effort to develop techniques that enhance data-driven
techniques in speaker characterisation for speech synthesis,
this paper describes a new method for automatically deter-
mining the location of the closed phase delimited by the
glottal closure and opening instants.

The proposed approach for detecting the glottal opening is
based on multiscale products of wavelet transform of speech
signal at different scales with enhancement of edge detection
and estimation. It is shown that the method is effective and
robust for speech singularity detection such as glottal open-
ing instant as product is a processing which reinforces edge
detection.

1. INTRODUCTION

This work is an important part of a current research in pitch
synchronous speech analysis using an automatic and accu-
rate vocal tract characterisation and vocal source parameter
estimation such as glottal closure and opening instants.
Accurate vocal tract estimation is one of the key require-
ments of glottal wave analysis using the source-filter model
of speech. In recent years, considerable progress has been
achieved in estimating the glottal source characteristics from
speech through single-channel speech analysis. An initial
pitch-asynchronous speech deconvolution technique that
uses the autoregressive Linear Prediction (LP ) model builds
on the assumption that the vocal tract parameters are slowly
and smoothly varying and performs analysis over a number
of pitch periods [20], [4].

However because fixed-frame analysis is performed during
excitation and open phases of the glottal cycle, there are two
adverse effects on the estimation of the vocal tract filter pa-
rameters when the glottis is open.

First, the vocal tract tube is no longer open at one end-
invalidating the LP model. So when the glottis is open, cou-
pling takes place with the subglottal cavity introducing sub-
glottal resonances and antiresonances to the spectrum. These
are superimposed on the supraglottal spectrum. The typical
effects of this sub-glottal interference are to reduce formant

frequencies while increasing formant bandwidths [12]. Thus,
if the period of analysis is over both closed and open glottal
phases, there will be a smearing or averaging of the parame-
ters, and consequent loss of speaker characteristic informa-
tion when we inverse filter with these parameters.

Second, the speech is no longer excitation free. LP autore-
gressive analysis techniques assume zero-mean input to the
vocal tract filter. This assumption is no longer valid while
the glottis is open. Thus, if the analysis is performed only
during the closed phase, we can more accurately parameter-
ise the vocal tract resonances [7]. That’s why determining
the glottal closure and opening instants from speech signal
with accuracy are of major interest. This parameter can be
implied in a wide range of applications. Among these are
speech synthesis and transformation, voice quality en-
hancement, speaker identification, voice pathology classifi-
cation, speech coding and transmission [3]. In particular,
knowing these instants can improve the natural speech syn-
thesis. In speech coding, they could improve the speech
compression rates.

The main aim of this paper is to present a new method for
determining glottal opening and closure instant from only
speech signal. The proposed approach consists of computing
the multiscale products of speech wavelet transform at dif-
ferent scales in order to enhance edge detection of speech
signal.

The paper is structured as follows. First we outline some
closed phase detection methods. In the next section, we pre-
sent a multiscale method for GCI. Then we briefly review
the principles of the multiscale products and its ability of
peak detection and estimation as reported in [11]. We then
step through the method for automatically locating glottal
opening instant. We illustrate results for both male and fe-
male voices. Section 6 concludes this work.

2. CLOSED PHASE DETECTION METHODS

When a closed phase of the glottal cycle is assumed to exist,
attempts have been made to locate the GOI in order to per-
form pitch synchronous processing of speech signal. These
approaches can be classed as single channel analysis or dual
channel analysis. It has been fairly common for studies and
analyses to use a dual channel approach [18], [19], where
the laryngograph is used to locate the closed phase by locat-
ing especially the glottal opening. However, this will not be
appropriate for speech analysis outside laboratory condi-
tions.
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Single channel analysis uses only the speech signal to locate
the GOI. The most methods that rely on using the speech
signal alone have proved unreliable in locating the closed
phase. Because of the difficulty in locating the glottal open-
ing instant, many of these techniques, e. g. [16], [17], rely
on simply estimating the GCI and assuming that an ad-hoc
choice of post-GCI interval length will lie within the closed
phase. These lengths are generally chosen to be either: a
fixed constant length e. g. 2ms; or a percentage of the pitch
period, e. g. 30%. Others methods, like that of Wong and al.
rely on appropriate thresholds being applied [21]. Work pre-
sented in [5], [7] outlined a method for automatic closed
phase location by excluding the intervals that are not within
the closed phase; the indicator used is the log determinant of
the Kalman filter (KF) estimate error covariance matrix.
Recently work has been reported and it was suggested that
the signal representing acoustic input power at the glottis
can be used to determine the instants of glottal closure and
opening [9].

3. MULTISCALE GCI DETECTION

Glottal closure instants are often points of sharp variations
or singularities in speech signal, [15], [1]. According to Mal-
lat [9], the wavelet transforms demonstrated excellent
capabilities for detection of singularities in signals.
Furthermore, in the last years, wavelet transforms have been
intensively applied in different pitch and GCls detection
algorithms [8], [13], [15]. Most of those algorithms are
based on the dyadic wavelet transform. In [8], Vu Ngoc and
al. proposes speech representation in the time-scale domain
by wavelet transform and a filterbank implementation. The
main idea presented is that all dyadic scales are used for
speech analysis. As a result, not only high frequency
features are analysed with accuracy but also smooth
singularities in the signal can be detected. The work
presented in [6], explores similar concept and proposes a
robust strategy for glottal closure instants detection. This
strategy uses significant minima and maxima time localiza-
tion of the filterbank outputs; it takes decision from different
scale minima giving the best estimation of the GCIs. Figure
1 shows the strategy of this algorithm. GClIs are located
inside the meantime defined by minima and maxima of the
scale 6 filter. The minima and maxima positions converge to
the reference GCls for the channels where these extrema are
detected and satisfy the condition of being included in the
alternation minimum and maximum at scale 6. Thus the GCI
is estimated as the position of the minimum given by the
lowest scale which satisfies the inclusion condition. In the
worst case, the mid instant of the minimum and maximum
interval of scale 6 is chosen. Figure 1 illustrates an example
where GCI detection fails at scale 0, but gives the best esti-
mation at scale 1.
4. MULTISCALE PRODUCTS

We consider a multiscale analysis by forming the product of
the wavelet transform of a function f(n) at some dyadic
scales

pmy =" wy £ (). (1)
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This is distinctly a non linear function of the input time se-
ries f(n). The function p(n) will show peaks at speech signal
edges, and will have relatively small values elsewhere [10].
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Figure 1: GCI detection for a voiced speech signal (female
voice). From up to bottom: speech signal-speech wavelet
transforms (WT) from scale 2° to scale 2°. Symbols: + mini-
mum, * maximum, o GCI

Singularities produce cross-scale peaks in wavelet transform
coefficients, which are reinforced in p(n). Although particu-
lar smoothing levels may not be optimal, the non linear
combination tends to reinforce the peaks while suppressing
spurious noise peaks. The signal peaks will align across
scale for the first few scales, but not for all scales because
increasing the amount of smoothing will spread the response
and cause singularities separated in time to interact. Thus
choosing it too large will result in misaligned peaks in p(n).
An odd number of terms in p(n) preserves the sign of the
edge [11]. Choosing three levels of wavelet decomposition
is an optimal solution of multiscale product method for de-
tecting small peaks.

5. GOIDETECTION BY MULTISCALE PRODUCT

The Keele university database has been used to experiment
the proposed method for estimating GOIs in voiced speech
signal. Keele database includes acoustic speech signals and
laryngograph signals. Five adult female and five adult male
speakers were recorded in low ambient noise using a sound
proof room. Each utterance consisted of the same phoneti-
cally balanced English text. In each case, the acoustic and
laryngograph signals are time-synchronised and share the
same sampling rate value of 20 kHz [14].

We have shown in [2] that opening is more regular than clo-
sure instant on the EGG signal. Thus the glottal flow pre-
sents approximately the same behaviour in the neighbour-
hood of these instants. These singularities are smoothed due
to the effect of the vocal tract and then the speech signal
presents smoothed singularities at these instants. It is then
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more difficult to detect them especially at GOI which is
characterised by a more regular behaviour.

In an effort to circumvent these problems, it is argued that if
we use a non linear combination of wavelet transforms of
speech signal at different scales, we can give more accurate
estimation of the GOIL. The wavelet given by the equation
(2) is used in this work and the multiresolution product
analysis is operated for three scales ;=22 $,=2° and s;=2".

g(1) = —cos(2T fy 1) .exp(—12 / 21%) )
With T =1/2f,, f;= Fe /2 and Fe=20 kHz.
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Figure 2: From up to bottom: speech signal (female voice
f1) — speech wavelet transforms from scale 2> to scale 2°-
normalized multiscale product of the 3 scale speech WT.

05

i} 4

05

L ! ! L I L ! ! !
0 50 100 150 200 250 300 350 400 450 SO0

YT IV TV TV

1 1 1 1 I 1 I 1 1
0 50 100 150 200 250 300 350 400 450 SO0

(.

L ! ! L ! L ! ! !
0 50 1000 150 200 250 300 350 400 450 SO0

01

o

Figure 3: GOI and GCI detection for a voiced speech signal
(female voice /0/). From up to bottom: speech signal - EGG-
normalized product of the 3 scale speech WT. Symbols: *
GCI, + GOI.

Figure 2 and 4 depict respectively frame of vowel /o/ ex-
tracted from the word /north/ and uttered by a female and
male speakers. Each of the two figures depicts the speech
signal followed by its three wavelet transforms and at the
bottom the cross-scale normalized product p(n). Firstly, we
note in the cross scale product two types of minimum peaks;

those corresponding to GCI are the most distinguishable. We
can see clearly the effect of the product in suppressing the
additional noise peaks and consequently the best detection
of GOL
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Figure 4: From up to bottom: speech signal (male voice) —
speech wavelet transforms from scale 2° to scale2” - normal-
ized multiscale product of the 3 scale speech WT.
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Figure 5: GOI and GCI detection for a voiced speech signal
(male voice /0/). From up to bottom: speech signal - EGG-
normalized multiscale product of the 3 scale speech WT.
Symbols: * GCI, + GOI.
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Figure 6: GOI and GCI detection for a voiced speech signal
(male voice /i/). From up to bottom: speech signal - EGG-
normalized multiscale product of the 3 scale speech WT.
Symbols: * GCI, + GOI.
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With reference to the GCIs and GOIs detected from the
laryngograph signal, a robust strategy of GCI and GOI lo-
calization was deduced. Note that the derivative of EGG
signals represented in figures 3, 5 and 6 are smoothed by a
zero phase filter to show the GOI that is less obvious and
can not be detected in some cases from the EGG signal [2].
The great minimum peak reinforced by the multiscale prod-
ucts corresponds to the sharpest variation in speech signal i.
e. the GCI, however the smaller minimum peak situated
between two successive GCls is linked to the GOI. Figure 3
and 5 shows the efficiency of the proposed strategy for the
two utterances of vowel /o/ comparing to the GOI given by
the maximum of the filtered EGG. Figure 6 is an illustration
of the efficiency of the proposed method for the vowel /i/
pronounced by a male speaker.

6. CONCLUSION

Detection and estimation of speech edges generated at GOI
are considered. Characteristic points of speech signal are
determined by a multiscale product method. This method
consists of computing the wavelet transform of acoustic
speech signal at various scales, forming the product of the
wavelet transform coefficients and then looking for mini-
mums to localize GOI.

Odd number of scales guarantees the sign edge preservation.
The non linear combination permits to reinforce the cross-
scale peaks produced at GOI and reduces spurious noise.
Efficiency of this method is presented on three examples of
speech utterance signal.
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