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ABSTRACT 
Several images are combined into one image for transmission 
by a single channel and recovery by a receiver. The distortion 
or mixture of the received images is invisible. 
Transmultiplexer consists of upsamplers and 1-D FIR filters. 
Detransmultiplexer consists of 1-D FIR filters and 
downsamplers. Bilinear constraints on the synthesis and 
analysis FIR filters are imposed to achieve the perfect 
reconstruction. The optimization method for filter design was 
applied. 

1. INTRODUCTION 

Transmultiplexing [1,2,5] is a structure that combines 
a collection of suitably filtered signals for the transmission 
by a single channel. The transmultiplexers were originally 
studied for 1-D signals in the context of converting Time 
Division Multiplexing (TDM) into Frequency Division 
Multiplexing (FDM) with a goal of converting back to TDM 
at some later point. Transmultiplexers have some important 
applications, in particular in telecommunications, to provide 
many signals over a single transmission line. The separation 
of signals should be perfect and the recovery of each signal 
should be performed without leakage of signal from one 
channel to another [3,4]. This goal can be achieved by 
a choice of filters that ensure perfect reconstruction. 

The optimization method of filter bank design reducing 
the above-mentioned effects is presented below. Using this 
approach, the obtained 1-D filters were applied to image 
transmultiplexing and preserving the perfect reconstruction. 

Transmultiplexing is usually associated with the 1-D 
signals. In this paper we attempt to increase the variety of 
signals that can be transmultiplexed. Methods usually used 
for the acoustic signals were successfully applied to images.  

2. TRANSMULTIPLEXING 

A transmultiplexer combines several images into a single 
image. Its application is for simultaneous transmission 
of several images through a single channel. 

Fig.1 shows the structure of the four-channel image 
transmultiplexer. The input images are upsampled 
horizontally, filtered vertically and summed to obtain two 
composite images. These composite images are then 
upsampled vertically and filtered horizontally and summed to 
obtain the single image. This image can be transmitted over 
a single transmission channel. At the receiver end, the signal 

is relayed first to the two channels of the 
detransmultiplexation part, where the signals are filtered 
horizontally and downsampled vertically. Then these signals 
are relayed to the four channels where images are filtered 
vertically and downsampled horizontally to recover the 
original images. Although an example presented in Fig.1 
consists of four channels, only two different filters (  and 

) were used for transmultiplexing and other two (  and 
) for the detransmultiplexing. The basic idea is the 

reversibility of all procedures of transmultiplexation in such 
a way that all input images could be recovered as precisely as 
possible. 

tH1
dH1

tH1
dH1

3. PERFECT RECONSTRUCTION CONDITIONS 

For the 1-D signal, the dependence of output s  from inputs 
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where M
M ew /12 −⋅−= π , ),(zsi    stand for the 

z-spectrum of discrete signal { , transmultiplexer and 
detransmultiplexer transfer functions, respectively. This 
means that each output signal depends on all inputs signals. 
A key point is that the constituent signals should be 
recoverable from the combined signal. To fulfill the perfect 
reconstruction condition, we obtain from (1) a set of 
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where ji,δ  is a Kronecker function and the natural number τ  
is some shifting inserted by the causal filters. 

Under assumption that all filters are FIR type of order I, 
conditions (2) are equivalent to 
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Figure 1: The 4-channel image transmultiplexer system. 
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coefficients of the  filter. Equalities (3) are fulfilled for 
all  if and only if 
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for , where [.] means an integer part of 
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4. FILTER DESIGN 

Conditions (4) can be written in matrix notation 
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For each pair i  of filter numbers, condition 
(5) gives [  equations. Therefore it results in the 
system of M  equations. 
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To accomplish the perfect reconstruction with the shifting 
τ , conditions (5) have to be followed while filters designing. 
There is no simple method to find a solution of the set of 
bilinear equations (5).  This makes the optimization methods 
useful. To find the FIR filters, a computer minimizes the 
quantity criterion 
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with respect to h  and . Each solution obtained in such 
way depends on the starting point of minimization procedure 
and usually reaches a local minimum of (6) only. 
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5. EXAMPLE 

To verify the presented in Fig.1 method of 1-D filters 
application to image transmultiplexing, some examples were 
computed and analyzed. One of them is presented in this 
paper. Images consist of  pixels coded on 8 bit 
grayscale. 

200200×

To design 1-D filters the following was assumed: 
• 1-D transmultiplexer consists of two channels, i.e. 

2=M , 
• all filters are of 10-th order, 
• shifting 2=τ , 
• amplification 1=c . 

For the considered case ( 2=M , ), the set of 
conditions (5) consists of twenty-four equations. All values 
of filters parameters were equal to one to start the 
minimization procedure. A minimum value 

 of the quantity criterion (6) was 
obtained. It means that for each equation, the obtained 
average value 

10=I

6
min 1026333.0 −⋅=Q

24/minQ  of residuum is approximately 

equal to 10 . The results of minimization are presented in 
Table 1 (filter coefficients for transmultiplexing) and in Table 
2 (filter coefficients for detransmultiplexing). The amplitude 
and the phase characteristics of all filters are presented in 
Fig.2 and Fig.3. Amplification c was assumed to be one, so 
the high amplification of transmultiplexing filters is balanced 
by the low amplification of detransmultiplexing filters. 

4−

According to the scheme presented in Fig.1, the filters 
defined in Table 1 were used to combine four images, each of 
size 200200×  pixels, into one image of size 400 400×  
pixels. The obtained combine image is presented in Fig.4 and 
its spectrum is presented in Fig.5. The filters presented in 
Fig.3 and Table 2 were used to recover the four original 
images. 

In Fig.6 and Fig.7 the input and the output images 
obtained for four-channel transmultiplexer are presented. 
When compare the input and output signals, only boundary 
effects are visible. The Root Mean Square Errors (RMSE) for 
the tested signals are presented in Table 3. Taking into 
consideration the 256 levels of picture's gray, we notice that 
transmission errors constitute usually less than 4% but for 
some images can rise even to 9%. Such errors are not 
noticeable for a human eye (compare Fig.6 and Fig.7). 

 
Table 3. Transmission errors. 

Channel No. RMSE 
1 2.03 
2 22.55 
3 1.35 
4 3.98 
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Figure 2: Characteristics of filters for the 2-channel 
transmultiplexing. 

 
 

Table 1. Values of  coefficients, . t
kH { }2,1∈k

No. tH1
tH 2  

0 0.0237 0.0058 
1 -0.0863 -0.0211 
2 -1.0307 -0.2492 
3 0.9830 1.2160 
4 0.3036 1.4178 
5 0.4566 -1.3306 
6 0.3232 -0.8861 
7 -0.1633 0.2540 
8 -0.1888 0.2585 
9 0.1231 -0.1318 

10 0.0723 -0.0758 
 
 
 

 

 

Figure 4. Image in the transmission line. 

 

Figure 3. Characteristics of filters of the 2-channel 
detransmultiplexing. 

 
 

Table 2. Values of  coefficients, d
iH { }2,1∈i . 

No. dH1
dH 2  

0 -0.0106 -0.0694 
1 -0.2320 1.1175 
2 -1.2930 1.0563 
3 1.4245 0.1259 
4 0.9054 0.9395 
5 -0.3472 -0.3784 
6 0.2018 0.1412 
7 0.0389 -0.0134 
8 0,2189 0.0750 
9 -0.1100 -0.0415 
10 0.0075 -0.0011 

 
 
 
 

Figure 5. Spectrum of the combine image. 
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6. CONCLUSIONS 

Transmutilplexers allow transmitting a large number of 
signals by one transmission line. This reduces the operating 
costs essentially. Moreover transmultiplexing increases the 
protection against some kind of disturbances. For example, 
the loss of some parts of transmitted image, even though 
causing disturbances in all output images, usually leads to 
small and invisible effects. If the loss of information were 
limited to the one image only, it could lead to noticeable 
effects. 

It is an important observation that the perfect 
reconstruction can be obtained without assumption that filters 
have the separate frequency bands. It protects the transmitted 
images against some kind of frequency interferences.  

Upon the comparison of input and output images 
presented in this paper, no distortions were noticeable. It 
means that minimization procedures enable us to find the 
filters which realize the perfect image reconstruction. It is 
possible to find more than one such solution. This results in 
an opportunity to fulfil the additional conditions. 

It is easy to prove that causal FIR filters lead to at least 
1=τ  shifting. The greatest admissible shifting 

[ ] 1/2 −MImax =τ  is an increasing function of filters range 
and a decreasing function of number of channels. 
 

 

 
 

Figure 6. An example of the input images. 

 

 
 
Figure 7. An example of the output images transmitted by 4-

channel transmultiplexer. 
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